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Abstract

We present a model of curvilinear grouping using piece-
wise linear representations of contours and a conditional
random field to capture continuity and the frequency of dif-
ferent junction types. Potential completions are generated
by building a constrained Delaunay triangulation (CDT)
over the set of contours found by a local edge detector.

Maximum likelihood parameters for the model are
learned from human labeled groundtruth. Using held out
test data, we measure how the model, by incorporating con-
tinuity structure, improves boundary detection over the lo-
cal edge detector. We also compare performance with a
baseline local classifier that operates on pairs of edgels.

Both algorithms consistently dominate the low-level
boundary detector at all thresholds. To our knowledge, this
is the first time that curvilinear continuity has been shown
quantitatively useful for a large variety of natural images.
Better boundary detection has immediate application in the
problem of object detection and recognition.

1. Introduction

Finding the boundaries of objects and surfaces in a scene
is a problem of fundamental importance for computer vi-
sion. There is a large body of work on object recognition
which relies on bottom-up boundary detection to provide in-
formation about object shape (e.g. [3, 10, 1]). Even in cases
where simple intensity features are sufficient for object de-
tection, e.g. faces, it is still desirable to incorporate bottom-
up boundary detection in order to provide precise object
segmentation (e.g. [24]). The availability of high quality
boundary location estimates will ultimately govern whether
these algorithms are successful in real-world scenes where
clutter and texture abound.

Boundaries are typically detected using some local oper-
ator. For example, the recent work by [14] trains a classifier
that predicts the probability of boundary, Pb, at each pixel
location using local brightness, texture and color gradient
cues as features. Training data comes from a set of images
where boundaries have been marked by human subjects.
Unfortunately, this algorithm still misses many true bound-

aries and falsely detects others. The authors argue that de-
tection failures are primarily due to lack of context since hu-
man observers presented with only local image patches per-
form no better than the classifier [15]. How can we model
this missing context?

One well known source of contextual information is that
provided by curvilinear continuity, sometimes referred to
as “good continuation” or “illusory contour completion”.
Inspired by Wertheimer and Kanizsa, the study of this
phenomenon has a long and influential tradition in psy-
chophysics as well as neurophysiology [18]. More recently,
ecological statistics of contours have confirmed the exis-
tence of curvilinear continuity in natural images [7] and its
scale-invariant properties [20]. In computer vision there ex-
ists a rich literature on how to model curvilinear continuity
(e.g. [21,19, 17, 26]). More recent developments focus on
finding closed salient contours [6, 27, 13].

The most basic scientific question is whether this type
of additional contextual processing improves the accuracy
of boundary detection. In particular, any algorithm which
boosts low-contrast or illusory boundaries may also find
spurious completions in heavily texture regions of a scene.
Is the net effect positive or negative? This question can only
be answered by quantitative measurements. To the best of
our knowledge, no such measurements have been made on
a large, diverse set of real-world images.

The contribution of this paper is a stochastic model of
continuity and closure which provides boundary estimates
that are quantifiably better at all thresholds than the input
provided by a local detector. Our approach starts with lo-
cally computed Pb which is discretized into a set of piece-
wise linear segments. Potential completions are gener-
ated utilizing the constrained Delaunay triangulation as de-
scribed in Section 2. We show that this scale-invariant ge-
ometric structure captures a vast majority of the true im-
age boundaries, while reducing the complexity from hun-
dreds of thousands of pixels to a thousand candidate line
segments.

In Section 3 we develop two models of curvilinear con-
tinuity on this graphical/geometric structure: a simple local
model which classifies each pair of edges independently and
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Figure 1: Finding potential completions: (a) an object may
appear at any scale in the visual field (b) a piecewise linear
curve approximates the boundaries regardless of scale. (c)
Constrained Delaunay Triangulation connects the gaps and
completes a scale-invariant representation.

a global model which uses a conditional random field [12]
in order to enforce both continuity and long-range proba-
bilistic constraints on junctions.

Quantitative evaluation is made possible by utilizing
three existing image collections that have been labeled
with ground-truth boundaries: a set of 30 news photos of
baseball players [16], 344 images of horses [2] and the
BSDS300 [4], a boundary detection benchmark based on
images of natural scenes. The performance evaluation of
the local and global models on these 3 datasets is presented
in Section 4 along with exemplary results.

2. Scale-Invariant Completion

The starting point of our approach is the observation that
piecewise linear approximations of contours can be con-
structed in a scale-invariant way. Using the constrained
Delaunay triangulation to complete the piecewise linear ap-
proximations preserves this scale-invariance. Figure 1 gives
an illustration. The Delaunay triangulation (DT) is the dual
of the Voronoi diagram and is the unique triangulation of a
set of vertices in the plane such that no vertex is inside the
circumcircle of any triangle. The constrained Delaunay tri-
angulation (CDT) is a variant of of the DT in which a set of
user-specified edges must lie in the triangulation. The CDT
retains many nice properties of DT and is widely used in
geometric modeling and finite element analysis. It was also
recently applied to image segmentation by [28].

This piecewise linear representation has many advan-
tages over using the pixel grid: (1) by moving from 100,000
pixels to 1000 edges, it achieves high statistical and compu-
tational efficiency. (2) this discrete representation of the im-
age is scale-invariant, independent of the image resolution.
(3) By restricting completions to the edges in the graph, it
partially solves the problem of having too many spurious
completions. Moreover, we will show empirically that very
little of the true boundary structure is lost in this discretiza-
tion process.

Of particular interest to us is scale invariance. Empiri-
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Figure 2: Building a discrete graph. (a) we recursively split
a line until the angle 6 is below a threshold. (b) an illustra-
tion of the process: the input edge map, the linearization,
and the Constrained Delaunay Triangulation.
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cal studies of the ecological statistics of contours [7, 20, 5]
have revealed one fundamental problem in many existing
models: the lack of scale invariance. For example, the
stochastic motion model of [26] predicts that if one breaks
contours into segments at high-curvature locations, the dis-
tribution of segment length should be exponential. Work by
[20] suggests that the empirical distribution is not exponen-
tial; instead it closely follows a power law, a characteristic
of scale-invariant phenomena. A related power law is also
reported in [S]. These findings are consistent with the in-
tuition that we see objects at arbitrary scales. Scale invari-
ance is also crucial from a practical point of view, as it is
required in many fundamental vision tasks such as object
recognition.

2.1 Building a piecewiselinear representation

Our discretization step starts with using Canny’s hys-
teresis thresholding to trace the Pb contours and then re-
cursively split them until each segment is approximately
straight. Figure 2(a) shows an illustration of this lineariza-
tion: for a given contour, let § be the angle between seg-
ments ¢a and cb. Pick the set of points {a, b, ¢}, in a coarse-
to-fine search, such that the angle 6 is maximized. If 6 is
below a threshold, split the contour by adding a vertex at
c and continue. A heuristic is added to handle T-junctions:
when a vertex is very close to another line, we split this line
and insert an additional vertex.

We use the TRIANGLE program [23] to produce CDTs
as shown in Figure 3. The linearized edges extracted from
the Pb contours become constrained edges in the triangu-
lation which we refer to as gradient edges or G-edges.
The remaining completion edges or C-edges are filled in
by the CDT. Of particular interest to us is CDT’s ability
to complete contours across gaps in the local detector out-
put. A typical scenario of contour completion is one low-
contrast contour segment (missed by Pb) in between two
high-contrast segments (both detected by Pb). If the low-
contrast segment is short in length, it is likely no other ver-
tices lie in the circumcircle and CDT will correctly com-
plete the gap by connecting the two high-contrast segments.
This is closely related to the ligature analysis used in [?].



Figure 3: Examples of the CDT triangulation. G-edges
(gradient edges detected by Pb) are in black and C-edges
(completed by CDT) in green. Note how the CDT manages
to complete gaps on the front legs of the elephant (high-
lighted on the inset at right). These gaps are commonly
formed when an object contour passes in front of a back-
ground whose appearance (brightness/texture) is similar to
that of the object.

In order to establish groundtruth labels on the CDT edge
for fitting our models, we need to transfer human marked
boundaries from the pixel grid. This is accomplished by
running a maximum-cardinality bipartite matching between
the human marked boundaries and the CDT edges with a
fixed distance threshold. We label a CDT edge as boundary
if 75% of the pixels lying under the edge are matched to
human boundaries; otherwise we label it as non-boundary.

Figure 4 shows the performance of the local boundary
detector Pb as well as the performance when we assign
the average underlying Pb to each CDT edge.! These re-
sults clearly show that moving from pixels to the CDT com-
pletion seldom gives up any boundaries found by the local
measurement. The green curve documents the soft ground-
truth labellings of the CDT edges (percentage matched to
human marked pixels). This is the target output of the two
continuity models we describe next. The gap between the
asymptotic recall of Pb and the ground-truth shows that the
CDT is even completing a few contours which are com-
pletely illusory (i.e. contours with no local evidence).

We have experimented with other alternative schemes of
completion. For example, one way to complete potential

IThroughout this paper, performance is evaluated with using a
precision-recall curve which shows the trade-off between false positives
and missed detections. For each given thresholding ¢ of the algorithm
output, above threshold boundary points are matched to human-marked
boundaries H and the precision P = P(H (z,y) = 1|Pb(z,y) > t) and
recall R = P(Pb(z,y) > t|H(z,y) = 1) are recorded (see [14] for
more discussion).
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Figure 4: This Precision-Recall curve verifies that moving
from pixels to the CDT completion doesn’t give up any
boundaries found by the local measurement. For compar-
ison, we show the upper-bound performance given by the
training data on the CDT edges. The upper bound curve has
a precision near 1 even at high recall and achieves a greater
asymptotic recall than the local boundary detector, indicat-
ing it is completing some gradientless gaps.

gaps is to allow each vertex to connect to its k nearest neigh-
bors, subject to visibility. This scheme adds many more
completions than the CDT, without achieving any improve-
ment in performance.

3. Modeling Curvilinear Continuity

In the previous section we described how to construct
a discrete, scale-invariant structure, the CDT graph, from
low-level edges. We will associate a random variable X to
every edge e in the CDT graph, where X, = 1 if e corre-
sponds to a true boundary contour and X, = 0 otherwise.
The variables {X.} interact with each other through ver-
tices or junctions in the graph. Our goal is to build a prob-
abilistic model of continuity and junction frequency on the
CDT graph and make inference about { X }.

We will introduce two models: one of local continuity
and one of global continuity. The local continuity model
considers only the local context of each e; each X, is esti-
mated independently in its local context. This serves as a
baseline model and is a convenient place to study the rel-
evant features (which are all defined locally). The global
continuity model uses conditional random fields [12] to
build a joint probabilistic model over all edges. We esti-
mate the marginals of X, using loopy belief propagation.

3.1 A local continuity model

Each edge e in a CDT graph is naturally associated with
a set of features including the average Pb of pixels along
the edge e and whether it is a G-edge (detected in Pb) or
C-edge (completed by the CDT). The local context of e in-
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Figure 5: (&) A simple 2-edge model of local curvilinear
continuity. each edge has an associated set of features. con-
tinuity is measured by the angle . (b) evidences of conti-
nuity come from both ends of edge ey. The new*“probability
of boundary” for ey is the product of the 2-edge model on
both pairs (e, e1) and (eq, €2).

cludes these features and those of neighboring edges in the
CDT graph.

Consider the simplest case of context: a pair of con-
nected edges ( Figure 5(a) ). Each edge can be on or off
(being a true boundary or not), hence four possible label-
ings of this pair. However, the groundtruth contours in our
datasets are almost always closed; line endings and junc-
tions are rare. Therefore we make the simplifying assump-
tion that there are only two possible labelings: either both
of them are on, or both are off.

Our best local model uses as features Pb, average Pb
over the pair of edges; G, an indicator variable whether both
of the edges are G-edges, and 6, the angle formed at the
connection of the pair. We use logistic regression to fit a
linear model to these features. We have found that logis-
tic regression performs as well as other classifiers (we also
tested support vector machines and hierarchical mixture of
experts). It also has the advantage of being computationally
efficient and simple to interpret.

To evaluate the local continuity model, we use the classi-
fier to assign a new “probability of boundary” value to each
edge e. Consider Figure 5(b): evidence of continuity comes
from both ends of an edge e, as a contour at ey would have
to continue in both directions. We assume that these two
sources of information are independent and take a product.
Recall X, = 1 if the pixels corresponding to e lie on a true
boundary and 0 otherwise. The logistic model gives an es-
timate of P(X., = 1, X., = 1), the posterior probability
that the pair of edges (eq, e1) are both true. If S; and So
are the two sets of edges connecting to e( at the two ends
we define the new boundary operator Pby, under the 2-edge
product model to be:

Pby, = gfleaé P(Xeoz17)('61:1)~61r;1€a§<;2 P(X.,=1,X.,=1)

The quantitative performance evaluation of Pby, against Pb
is shown in Section 4.

To evaluate relative contribution of each feature, we fit
classifiers to subsets of features and compared their perfor-
mance. The results on the baseball player dataset are shown
in Figure 6. Performance is evaluated with both a precision-
recall curve and a cross-entropy loss L [8].

We observe that Pb is the most useful feature with L =
0.418. Angle 6 by itself is not as useful; however, when
combined with Pb, § helps reduce the loss to 0.385. G by
itself is quite informative, as 85% of the positive examples
have G = 1 ( both edges being G-edges ). When the three
features are combined, the loss is reduced to 0.374. We
have experimented with many additional features but they
are at most marginally useful, hence not included in the lo-
cal model.

We also considered several variants such as: a second-
layer classifier to combine information from the two ends of
eo; a 3-edge classifier which directly takes as input the fea-
tures from triples of edges; and a full 4-way classification
on each pair of edges. The simplest 2-edge product model
described above performs as well as any of these variants.
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Figure 6: Evaluating combinations of features with
precision-recall curves and cross-entropy loss L on the set
of baseball player images. Pb is the most powerful single
feature. The addition of continuity @ significantly improves
the performance.

3.2 A global continuity model

In order to capture longer range dependencies of bound-
ary presence we also consider a global probabilistic model
built on top of the CDT. We utilize the same measurements
as in the local-model (Pb,G,0) along with the frequency
with which junctions of different degrees appear. To inte-
grate these features across the image, we use a conditional
random field (CRF) model as first introduced by [12].

Unlike the MRF models traditionally used in vision
which model the joint distribution of image measurements
and hidden labels, a CRF focus directly on the conditional
distribution of labels given the observations. One key ad-
vantage from our perspective is that the observed variables
need not be conditionally independent given the hidden



Figure 7: The factor graph representing our conditional ran-
dom field model for global continuity. The CDT provides
both the geometric and graphical structure for our model.
Each edge in the CDT corresponds to a variable X, (repre-
sented by circles) which is 1 if pixels corresponding to edge
e constitute a true boundary. Potential functions (squares)
consist of a singleton potential for each edge encodes the
underlying Pb measurement and continuity/closure poten-
tials at the vertices whose values are dependent on both the
angles between incoming segments and the numbers of C-
and G-edges entering a junction.

variables. This allows much greater freedom in choosing
model features.

Conditional random fields have been proposed as a
method for image segmentation by[11, 22, 9], however, the
focus is still on pixel-level labeling which is tied to the res-
olution of the pixel grid. Moving to scale free, mid-level
tokens is our key ingredient to handling objects at a contin-
uum of scales. For example, the “multi-scale” approach of
[9] uses features at three different scales relative to the im-
age, but the features are different for each scale. To make
such a model scale-invariant requires adding a set of fea-
tures for every possible object scale and tying the parame-
ters together across scales. In our case, because the CDT
structure and input features are scale-invariant a simple ran-
dom field would suffices.

We base the independence structure of our hidden vari-
ables on the topology of the CDT. Recall the random vari-
able X, whose value is 1 if the pixels corresponding to e lie
on a true boundary. Let Xy, be the collection of variables
for all edges which intersect at a vertex V' of the CDT. We
consider log-linear distributions over the collection of edges
of the form

el2Xe d(Xel1,O)+3 2y ¥ (Xv|1,0)}

P(X|I,0) = Z0.6)

The ¢ potential function captures the extent to which the
image evidence I supports the presence of a boundary under
edge e. ¢ describes the continuity conditions at a junction

between contour segments. © is the collection of model
parameters.
Our edge potential is given by

¢(X€|I7 @) = ﬂPbEXe

where Pb, is the average Pb recorded over the pixels cor-
responding to edge e. The vertex potential is given by

Y(XV|1,0) = i j1{deg, —irdes. —5}
i

+ ’Yl{degg + deg6:2}f(9)

where deg, is the number of G-edges at vertex V' for which
X. =1 and similarly deg, is the number of C-edges which
are turned on.

(degy, deg.) determines the “junction type” for every
possible assignment of X,,: for example, a total degree of
1 ((degy + deg.) = 1) corresponds to a line ending, 2 a
continuation, and 3 a T-junction. The model associates a
seperate weight ¢; ; to each possible type. When the total
degree of a vertex is 2, v weights the continuity of the two
edges.

0 is the angle formed by the two edges turned on, and
f is a smooth function which is symmetric around 6 = 0,
falling off as & — . If the angle between the two edges
is close to 0, they form a good continuation,  f () is large
and they are more likely to both be turned on.

Our model has the collection of parameters © =
{a, 3,7}. We fit © by maximizing the log likelihood.
Since the likelihood is log-linear in the parameters, taking
a derivative always yields a difference of two expectations.
For example, the derivative with respect to the continuation
parameter -y for a single training image/ground truth label-
ing, (I, X) is:

9 <e{zﬁ $(Xc|1,0)+5y $(Xv|1,0)} >
og

Oy Z(I,,0)

0] 0
zv: 6_7{71{(1egg +degC:2}f(9)} - % log Z(Inv 9)

Z ]-{degg + degC:2}f(9)
\%4

- <Z 1{degg +deg,.=2} f(a) >
1%

P(X|I,0)

where we use the fact that derivatives of the log partition
function generate the moment sequence of P(X|I,©). The
first term is the observed sum of f(6) on degree 2 vertices
while the second term which is the expectation under the
model given our current setting of the parameters. When
the model expectations match those observed in the train-
ing data, we have found the maximum likelihood setting of



the parameters. Until we reach that point, we take a small
step in the gradient direction. Parameters typically converge
after a few hundred iterations.

Unfortunately, computing the expectations of our fea-
tures with respect to model parameters is intractable. Un-
like the sequence modeling tasks where conditional random
fields were first investigated our graph is not tree structured,
it contains many triangles (among other loops). We approx-
imate the edge and vertex degree expectations using loopy
belief propagation[25]. Loopy belief propagation has been
applied to many vision problems before, typically on the
pixel-grid. The connectivity of the CDT graphs we study
is more complicated than a regular grid. However, in our
experiments belief propagation appears to converge quickly
(< 10 iterations) to a reasonable solution.

We find that the parameters learned from groundtruth
boundary data match our intuition well. For example, the
weight o o is much smaller than « o, indicating that line
endings are less common than continuation and reflecting
the prevalence of closed contours. For degree 2 vertices, we
find ag 9 > 1,1 > @2, indicating that continuation along
G-edges is preferable to invoking C-edges.

Once the model has been trained, we use belief propa-
gation to estimate the marginal distributions {X.} on the
edges of the CDT and then project these down to the pixel
grid where it can then be compared to both the local model
and the raw Pb.

4. Results: Iscurvilinear continuity useful?

We have described two different algorithms, each which
outputs a new estimate of the boundary probability at each
pixel: Pby, the local model on the CDT, and Pbg, the
global random field model. In order to evaluate these, we
use three human-segmented datasets: a set of news photos
of baseball players [16] split into 15 training and 15 test-
ing images, images of horses [2] split into 172 training and
172 test images, and the Berkeley Segmentation Dataset [4]
(BSDS) which contains 200 training images and 100 test
images of various natural scenes.

Performance on these datasets is quantified using the
precision-recall framework as in [14]. Figure 8 shows the
precision-recall curves for each data set. These quantita-
tive comparisons clearly demonstrate that mid-level infor-
mation is useful in a generic setting. Both models of curvi-
linear continuity outperform Pb. The global model, which
is able to combine local evidence of continuity and global
constraints such as closure, performs the best.

The improvement is most noticeable in the low-
recall/high-precision range which corresponds to the case
of boosting the most prominent boundaries and suppressing
background noise. These boundaries are typically smooth;
thus continuity helps suppress false positives in the back-
ground. This is evident in the examples shown in Figure 9.

We also find that our models push the asymptotic recall rate
much closer to 100% (without loss in precision), reflecting
their abilities to complete gradient-less gaps.

We observe that the benefit of continuity on the base-
ball player and horse dataset is much larger than that on the
BSDS dataset. One reason may be that the baseball and
horse datasets are harder (note the low precision rates for
Pb) which makes the role of continuity more important.

The remaining gap in performance between our model
and the upper bound may best be bridged by detecting ob-
jects in the scene using the mid-level boundary map and
then “cleaning up” the boundaries in a top-down fashion.
In the case of general datasets like the BSDS, this will re-
quire recognizing thousands of object categories.

5. Conclusion

We have described two stochastic models of curvilinear
continuity which have a verifiably favorable impact on the
problem of boundary detection. The local model of curvi-
linear continuity, though quite simple, yields a significant
performance gain. The global model, by making long-range
inference over local continuity constraints, is the most suc-
cessful in utilizing mid-level information.

The key step in our approach to modeling continuity
is moving from pixels to the piecewise linear approxima-
tions of contours and the constrained Delaunay triangula-
tion. This provides a scale-invariant geometric representa-
tions of images which tends to complete gaps in the low-
level edge map. Moving from 100,000 pixels to 1000 De-
launay edges is also important as it yields huge gains in both
statistical and computational efficiency.

We have shown that the outputs of our algorithms are
quantifiably better than a low-level edge detector on a wide
variety of natural images. We feel strongly that continued
progress in mid-level vision rests on being able to make
quantitative comparisons between algorithms. Many of
the latest exciting results in object recognition and stereo
reconstruction could not have occurred without the firm
grounding in quantitative evaluation. Perceptual organiza-
tion should be held to the same high standards.
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Figure 9: Example results on the three data sets. The two columns of edge maps show the local boundary detector Pb output
and the CRF model respectively. The algorithms outputs have been thresholded at a level which yields 2000 boundary pixels
for the baseball/BSDS images and 1000 pixels for the smaller horse images.



