
Formal Verification of Distributed Preemptive Real-time Scheduling

Gabor Madl1,2 Sherif Abdelwahed1

1Institute for Software Integrated Systems,
Vanderbilt University, Nashville, TN 37205

2Center for Embedded Computer Systems,
University of California, Irvine CA 92697

Abstract

The application of component middleware in mission-
critical systems introduces new challenges for distributed
real-time embedded (DRE) system developers such as the
safe composition of components to ensure end-to-end pre-
dictability. Model-based analysis provides a way to eval-
uate design alternatives with respect to functional spec-
ifications and the target platform. This paper introduces
a semantic domain which captures key time-based prop-
erties of a generic class of DRE systems. We utilize this
semantic domain to verify the preemptive schedulability
using existing model checking tools. The proposed ver-
ification method and framework is demonstrated on a
mission-critical avionics DRE system.

1. Introduction

Distributed real-time embedded (DRE) systems, in-
cluding command and control systems, wireless sensor
networks and avionics mission computing, increasingly
run in open environments, under highly unpredictable
conditions. As a result, current and planned DRE sys-
tems require a highly adaptive and flexible infrastruc-
ture that can factor out reusable resource management
services from application code, and provide safe meth-
ods for system synthesis.

When dealing with multiple Quality of Service
(QoS) properties, DRE system designers often face a
gap between design and implementation, since proper-
ties are specified in declarative way such as worst case
execution times, priorities or in even broader range
such as adaptible, fault-tolerant etc. Contrary, imple-
mentations typically follow an imperative approach
which makes hard to reconstruct system struc-
ture and behavior from the source code. To address

these challenges, it is useful to analyze system be-
havior at design-time, thereby enabling developers
to select suitable design alternatives before commit-
ting to specific platforms.

Several design methodologies were introduced for
embedded systems’ design which provide effective
methods and frameworks to bridge the gap of map-
ping functional specifications to the target platform.
Platform-based design [1], abstract semantics [4, 22],
model-based design [19] and pattern-oriented de-
sign [30] are all candidates which have proven their
effectiveness in various application domains.

Model-based analysis techniques can provide high-
level abstractions that capture crucial concepts of the
system operation such as structure, behavior, environ-
ment and the properties it must satisfy. We emphasize
that models are essential in the design, configuration,
integration and optimization and in our opinion should
be essential in the analysis as well. Model-based verifica-
tion techniques [6,11] provide a way for the design-time
analysis of many engineering systems including DRE
systems and allow, through abstraction, to overcome
accidental complexities associated with third genera-
tion programming languages such as memory manage-
ment and pointers. Furthermore, they provide a way
to observe and prove properties specified in a declar-
ative way by analyzing the composition of imperative
component implementations.

This paper utilizes the DRE Semantic Domain 4
as a formal basis for the analysis of distributed sensor
network applications. The verification algorithm checks
end-to-end deadlines and latencies for fixed-priority
scheduling. This method captures task dependencies,
priorities and delays in the communication and execu-
tion intervals as well. The analysis utilizes a novel con-
servative approximation scheme to verify the preemp-
tive scheduling of distributed multiprocess real-time



embedded systems. The validity of the approach can
be verified by available model checkers such as Up-
paal [26,21], Kronos [7] or the IF [2] toolset.

The structure of the paper is the following: Section 2
introduces the problems to be solved; Section 3 explains
how model-based verification can be applied to provide
a way for the design-time analysis of DRE systems;
Section 4 introduces the semantic domain used for the
analysis; Section 5 gives a detailed example for the ver-
ification; Section 6 compares our work on model-based
verification with related work; and Section 7 presents
concluding remarks.

2. Problem Formulation

This paper considers the problem of deciding the
schedulability of a given set of tasks with event- and
time-driven interactions, on a distributed preemptive
platform.

Definition 1 The system is schedulable if all tasks fin-
ish their execution before their respective deadlines. �

We use a timed automata formulation of the prob-
lem which translates the schedulability problem into
a reachability problem in which the set of tasks are
schedulable if a predefined error state is not reach-
able in any of the tasks’ timed automata. If this analy-
sis completes successfully it implies that all tasks com-
plete before their respective deadlines.

The proposed model of computation corresponds to
the stopwatch model due to assignments of variables
to clocks. The stopwatch model can be expressed using
hybrid automata, where in the preempted state the lo-
cal clock keeps a constant value (ẋ = 0), otherwise it
progresses linearly (ẋ = k, k ∈ N+).

Deciding the preemptive schedulability of the stop-
watch model has been shown to be undecidable using
timed automata [20]. To address this issue, we imple-
ment a discretized preemption scheme in which task
interruption can only be granted at specific intervals
during the task execution. This method gives an over-
approximation of the safe states of the system, when
the schedulable discretized approximation implies a
schedulable system in continuous time. By using the
timed automata approximation scheme we can achieve
superior performance in the verification compared to
hybrid automata verification.

Definition 2 We define a frame period for a task t ∈ T ,
referred to as Period(t) as the period of the slowest timer
on which the task depends. �

Tasks that are assigned to the same platform proces-
sor and have the same frame period are in the same

frame. Therefore, the set of frames is a partition of the
set of tasks T . For a task t we write Frame(t) to iden-
tify the set of all tasks in T belonging to the frame of
t.

Theorem 1 If the system is schedulable using dis-
cretized time with preemptions, it is also schedulable in
continuous time if

(∀t ∈ T ) D(t) ≥ Period(t)−
∑

t′∈Frame(t)−t

WCET(t′)

whereD(t) denotes the deadline of the task andWCET(t)
denotes the worst case execution time of the task.

Proof (Outline) Suppose on the contrary there exists
a schedule in discretized time which is not schedula-
ble in continuous time. This implies from Definition 1
that all tasks finish their execution before their respec-
tive deadlines in discrete time, whereas some tasks do
not finish their respective deadlines in continuous time.
Since none of the tasks spend less time executing this
implies that some tasks spend less time either in the
preempted or enabled state. A task can only spend less
time in the preempted state if the preempting task fin-
ishes the execution faster which is a contradiction.

Therefore, the only scenario possible is when a task
waits initially for shorter time than in the continuous
time. This can only happen when the task receives the
start event at some later time instance. This implies
that it won’t finish the execution earlier than in the
continuous case, only we delay with counting the dead-
line thus making an unschedulable task schedulable.
This phenomenon is the result of the deadline seman-
tics which define deadlines respective to being enabled
rather than respective to the timer which triggered the
computation.

By ensuring that deadlines are constrained by as de-
fined in the theorem we ensure that a schedulable sys-
tem in discrete time implies a schedulable system in
the continuous time as well, since even if the action
has to wait for all tasks before starting its execution
it will finish before the end of the frame as in Defini-
tion 2. �

3. Model-Based Verification

Designing a DRE application which satisfies multi-
ple QoS properties is a complex constraint-satisfaction
problem. To ensure optimal QoS support in practical
applications developers often need to face hard or even
undecidable problems. Despite recent advances in em-
bedded and hybrid systems’ analysis [22, 3, 2, 18] and
abstraction techniques [15] the generic verification of



industry-size DRE systems is largely unsolved. Time-
triggered systems offer better analyzability [14,28] but
increase the implementation complexity and resource
needs to satisfy the synchronization.

Figure 1. Model Checking with Heuristiscs

Figure 1 shows the proposed method for the real-
time analysis of distributed embedded systems. This
method builds on the results of platform-based de-
sign [1] and model integrated computing (MIC) [32].
Domain-specific modeling languages (DSMLs) play an
essential role in the design and analysis process. The
analysis follows the model checking approach [10] to
prove QoS properties of DRE systems.

Designing an application that satisfies multiple QoS
properties is a multi-step process in which the domain-
specific model is continually evolved until the underly-
ing method verifies that the QoS properties are satis-
fied. This evolution is performed by DRE system de-
signers based on the feedback from the model checking
tool.

The goal of the analysis is to aid system develop-
ment by choosing feasible design alternatives. Heuris-
tics play an important role in this approach by apply-
ing key constraints to the analysis model which can be
checked effectively. The result of the checks can be re-
ported back to the DRE system developer or can be
used to change the domain specific models automat-
ically. For example, heuristics can be used to obtain
priority assignments for tasks such that the system is
schedulable.

When designing applications with multiple QoS sup-
port the analysis often requires multiple tools for the
analysis. For example, one tool can be used to ver-
ify real-time properties while a simulation can be used
to predict the overall power consumption of the sys-
tem. The DRE Semantic Domain provides a com-

mon semantic domain which can capture multiple QoS
properties of a generic class of DRE systems, including
sensor networks. The common semantic domain pro-
vides the basis for the analysis of the domain-specific
model.

Simulators are often integrated into the analysis
tools and use the same model of computation. When
the model checking tool finds an unsatisfied property,
such as system deadlock (e.g., it may find a deadlock
when checking the formal model of computation gener-
ated from the domain-specific application model) the
simulator can be used to simulate the execution trace
that yields this undesired behavior.

DSMLs are used to synthesize executable code, sim-
ulations or documentation using the Model Integrated
Program Synthesis (MIPS) [33]. Since the DSML ap-
plication models are semantically linked to the formal
models of computation, the simulator and the gener-
ator must produce the same execution traces for the
same input data.

We use the DRE Semantic Domain as a common
semantic domain for the analyis. This domain has been
semantically anchored to the timed automata model
of computation and can be checked by model check-
ers which use timed automata as an underlying model
of computation such as Uppaal [26, 21], Kronos [7] or
the IF [2] toolset. However, as our results show a for-
mal proof of correctness can be obtained by applying
the verification method explained in Section 4.

4. The DRE Semantic Domain

In this section we formalize a computational model
that can express the event-driven nature of DRE sys-
tems. We define a model on a distributed platform with
possible execution preemptions. The proposed model
of computation is a composition of generic dataflow,
which is suitable to express event-driven communica-
tion and timed finite state machines. We refer to this
semantic domain as DRE Semantic Domain.

• The DRESemanticDomain allows the specifica-
tion of task dependencies and the mapping of tasks
to a distributed multi-threaded, multi-processor
platform and therefore is a generic to most DRE
system.

• The DRESemanticDomain incorporates a real-
time event channel component, which allows (1)
modeling of asynchronous non-blocking communi-
cation between tasks, (2) precise modeling of the
buffering in real-time event channel threads, (3)
capturing the exact delay of event propagations
on the event channel, (4) timers to be deployed to



different processors than the tasks which are sub-
scribed to them.

The DRESemanticDomain captures the behavior
of event-driven DRE systems. To facilitate formal de-
velopments, and without losing generality, we assume
that communications through shared variables or com-
mon coupling are not considered in the model and de-
lays within a processor are ignored since such delays
are orders of magnitude less than the delays incurred
by the real-time event channels between hosts.

4.1. Syntax

The DRE model of computation is a tuple M =
{T,C, TR, PR} where:

• T is a set of tasks,

• C is a set of real-time event channels,

• TR is a set of timers, which are special tasks that
publish events at a given rate.

• PR is a set of platform processors.

Tasks and timers are assigned to execute on a specific
processor. The processor associated with a given task
or timer is specified by the map Processor : T ∪ TR →
PR. Timers generate periodic events as specified by
the map Period : TR → N+.

Tasks are attributed by their priorities, sub-
priorities, deadlines, and worst-case execution times.
These properties are specified by the maps, P, SP,
D, WCET, respectively. In addition, tasks are de-
pendents on triggering tasks, timers or event chan-
nels. Event channels are attributed by the buffer
size and the worst case delay of delivering pub-
lished events. These properties are specified by the B
and δ maps, respectively. Connections inside the com-
putation model are defined by the TaskToTask, Task-
ToChannel, ChannelToTask, TimerToChannel and
TimerToTask functions which return the correspond-
ing elements to which the current element is con-
nected.

4.2. Semantics

Tasks are executed as soon as they are enabled by
system events, they are the highest sub-priority task in
the priority group and no other higher priority task is
enabled. Tasks can be preempted during execution by
higher priority tasks and will resume operation as soon
as all enabled higher priority tasks completed their cur-
rent execution cycle and are no longer enabled.

4.2.1. Time and Clocks In the continuous time
model, system clocks (global and local) are assigned a
value in R+ the set of non-negative real numbers. For
a given clock assignment x, we write x′ to denote the
immediate next clock assignment. In the DRESeman-
tic Domain, execution of tasks is coordinated with re-
spect to a global clock. The current global clock value
is denoted by xg. We associate with each timer r ∈ TR
a local clock xr that indicates the time remaining in
the current cycle. We assume that timers are all trig-
gered at the start of execution xg = 0. We associate
with each task t a local clock xt that indicates the
time spent in the execution state in the current execu-
tion cycle.

4.2.2. System State The state of the system is de-
fined as the composite state of its tasks, event channels
and timers.

For a dynamic element a, we write State(a, x) for
the value of a at (global) time x. We now define the
state domain of each model elements.

• (∀t ∈ T )(∀x ∈ R+) State(t, x) ∈ {idle, enabled,
executing, preempted}

• (∀c ∈ C)(∀x ∈ R+) State(c, x) ∈
{idle, send, receive,
buffer, wait}

• (∀r ∈ TR)(∀x ∈ R+) State(r, x) =
mod(x, Period(r)), where the function mod(x, y)
returns the remainder of dividing x by y.

For a given computation model M = {T,C, TR, PR},
the state of the overall DRE model is given by:

State(M,x) =
∏

a∈T∪C∪TR

State(a, x)

Note that the state of every system element is well-
defined at any time x and so does the composite state
of the system.

4.2.3. System Events System events corresponds
to changes in the state of one or more of the dy-
namic components of the model. We denote the set
of events as E. Some events are associated with a set
of types. This association is defined by the partial map
type : E → {start, finished}.

We introduce the functions send(a, e, x) and
receive(a, e, x). If a task a sends out an event e at
(global) time x by send(a, e, x) then receive(b, e, x′)
evaluates to true for a dynamic element b, other-
wise it evaluates to false.

Events are broadcasted to dynamic elements that
are connected to the generating element. These con-
nections are defined by the TaskToTask, TaskToChan-
nel, ChannelToTask, TimerToChannel, TimerToTask



maps, respectively, and follow a non-blocking se-
mantics, namely, if they are not received they get
lost.

4.2.4. System Transitions and Trajectories Sys-
tems transitions correspond to valid state changes and
the associated events. Validity of transitions are estab-
lished by the following rules. A trajectory is a sequence
of valid state changes and the corresponding trigger-
ing events. The set of all trajectories corresponding to
a set of state variables defines the behavior of the un-
derlying dynamic elements.

Timers generate events periodically, namely when
the corresponding state (local clock) evaluates to 0, ac-
cording to the following rule:

(∃r ∈ TR)(∀e ∈ E)(∀x ∈ R+) State(r, x) = 0 →
send(r, e, x′) ∧ type(e) = start

Tasks are cyclic execution units that change their
state based on a preemptive scheduling policy as de-
scribed earlier. Tasks are initialized at an idle state,
that is, State(t, 0) = idle, for all t ∈ T . An idle task
will be enabled when it receives an event:

(∀t ∈ T )(∀e ∈ E)(∀x ∈ R+) (State(t, x) = idle ∧
receive(t, e, x) ∧ type(e) = start) → State(t, x′) =
enabled

A task will be executed if it is enabled and no other
higher priority or sub-priority task is enabled on the
same processor. To simplify notation we write TS for
the set of tasks assigned to the processor S. Then for
a task t ∈ T with S = Processor(t) we have

(∀t ∈ T )(∀x ∈ R+) (State(t, x) ∈
{enabled, preempted} ∧ (∀t′ ∈ TS) (P(t′) >
P(t) ∨ SP(t′) > SP(t)) → State(t′, x) = idle) →
State(t, x′) = executing

A task will be preempted if it is executing and
another higher priority task becomes enabled on the
same processor. That is, for a task t ∈ T with S =
Processor(t) we have

(∀t ∈ T )(∀x ∈ R+) (State(t, x) = executing ∧
(∃t′ ∈ TS)(P(t′) > P(t) → State(t′, x) =
enabled)) →
State(t, x′) = preempted

A task t will return to the idle state if it is execut-
ing and its internal clock evaluates to WCET(t):

(∀t ∈ T )(∀e ∈ E)(∀x ∈ R+) (State(t, x) =
executing ∧ x = WCET(t)) → State(t, x′) =
idle ∧ send(t, e, x′) ∧ type(e) = finished

Generating an event at the end of the execution is
optional. An event channel receives events from a timer
or task and propagates it to a task with some delay δ.
If the task is in an execution cycle (not in the idle
state) it buffers the events. We formalize state tran-
sitions in the event channels next. When the task re-
ceives a start event it either propagates it or buffers it

according to the state of the subscribed task. bufferc

represents the buffer:
(∀c ∈ C)(∀e ∈ E)(∀x ∈ R+) (State(c, x) = idle ∧

receive(c, e, x) ∧ type(e) = start) → (State(c, x′) =
receive ∧ bufferc + +)

(∀c ∈ C)(∀t ∈ T )(∀e ∈ E)(∀x ∈ R+) (State(c, x) =
receive ∧ ChannelToTask(c) = t ∧ State(t, x) =
idle) → State(c, x′) = wait

(∀c ∈ C)(∀t ∈ T )(∀e ∈ E)(∀x ∈ R+) (State(c, x) =
receive ∧ ChannelToTask(c) = t ∧ State(t, x) 6=
idle) → State(c, x′) = idle

When a subscribed task finishes the execution cycle
the event channel moves to the wait state if the buffer
is not empty:

(∀c ∈ C)(∀e ∈ E)(∀x ∈ R+) (State(c, x) = idle ∧
receive(c, e, x) ∧ type(e) = finished) →
State(c, x′) = send

(∀c ∈ C)(∀t ∈ T )(∀e ∈ E)(∀x ∈ R+) (State(c, x) =
send ∧ bufferc = 0) → State(c, x′) = idle

(∀c ∈ C)(∀t ∈ T )(∀e ∈ E)(∀x ∈ R+) (State(c, x) =
send ∧ bufferc < λc) → State(c, x′) = wait

After the delay δ has passed the event channel gen-
erates an event for the subscribed task if the subscribed
task is idle:

(∀c ∈ C)(∀t ∈ T )(∀x ∈ R+)(∀y ∈
R+) (State(c, x) = wait ∧ ChannelToTask(c) =
t ∧ State(t, x) = idle → (send(c, e, y) ∧ type(e) =
start ∧ bufferc−− ∧ State(c, y) = idle ∧ y−x < δ)

(∀c ∈ C)(∀t ∈ T )(∀x ∈ R+)(∀y ∈
R+) (State(c, x) = wait ∧ ChannelToTask(c) = t ∧
State(t, x) 6= idle → State(c, y) = idle ∧ y−x < δ)

When an event is received in the waiting state the
event channel buffers it:

(∀c ∈ C)(∀t ∈ T )(∀e ∈ E)(∀x ∈ R+) (State(c, x) =
wait ∧ receive(c, e, x) ∧ type(e) = start) →
bufferc + +

4.3. Timed Automata Models

The DRE Semantic Domain can be modeled by a
set of timers, dynamic computation tasks, event chan-
nels and schedulers. DRE system models can be built
by the composition of these components. First we intro-
duce the components used for the modeling and then
we define the scheduling of the overall model.

4.3.1. The Timer The timer is a simple periodic
event generator which releases task initiation events at
a specified rate. Timers may represent sensors sampled
at a predefined rate and can arbitrarily drift from each
other. However, we assume that time drifts in timers
are bounded. Timers can be represented by a generic
timed automaton model shown in Figure 2.



Figure 2. Generic Model of the DRE Semantic Domain

4.3.2. The Task Tasks are the main components
which describe the actors in DRE systems. In addi-
tion to the four states defined in Section 4 (idle,
enabled, executing and preempted), we also intro-
duce a timeout state which can be used to express un-
desired behavior of the system such as when the task
cannot finish the execution before its respective dead-
line.

Tasks are enabled by events that may be received
from other tasks, event channels or at regular inter-
vals from a timer. The scheduler triggers the execution
of tasks based on the scheduling policy. After execu-
tion, the task may also initiate other tasks by generat-
ing a start event. We assume that the task generates
events at the end of the execution – this assumption is
valid in several component middleware (i.e. CCM [25]
or J2EE [31]) where transactions are committed at the
end of the computation.

4.3.3. The Event Channel Event propagations be-
tween tasks follow a non-blocking broadcast seman-
tics – events which are not received are lost. There-
fore, event passing has to be synchronized between
the publisher and consumer tasks. To alleviate these
restrictions communication between tasks are coordi-
nated through event channels.

Event channels provide the necessary mechanism
to allow asynchronous communication – the publisher
does not have to block until the consumer is ready to
receive the event. Published events are stored in the
event channel until the consumer is ready to receive
them.

The state denoted with the C letter are committed
states. This expresses time constraints, the local clock
of a timed automaton model cannot be increased in a
committed state, in other words an outgoing transition
has to be taken from these states, otherwise the system



will deadlock.
Event channels are generically represented by the

timed automaton shown in Figure 2. Note that this
model takes into account possible communication de-
lay as represented by the channel dependent maximum
delay factor δc.

4.3.4. The Scheduler To express the mapping of
execution tasks to platform processors we introduce
the scheduler modeling construct shown in Figure 2.
The scheduler selects enabled tasks for execution and
triggers preemptions according to the scheduling pol-
icy.

The scheduler initially starts in the idle state. It
will move to the select state if any tasks become el-
igible for execution. The selection is made instanta-
neously from the of enabled tasks’ queue and the se-
lected task will receive the run event which triggers
its execution. The time required for selection and con-
text switching can be bounded in a real-time imple-
mentation and added to the measured WCET times of
the tasks. The scheduler moves to the wait (initial)
state if no task is ready for execution.

The scheduling policy is encoded in three func-
tions: (1) Add(w, i), which increases the current pri-
ority level when taski becomes ready, (2) Sub(w, i),
which decreases the current priority level when taski

becomes ready, and (3) Enable(w, i), which evaluates
to true if the ith task is eligible for execution. For ex-
ample, in the case where priority is directly propor-
tional to the component index, Add(w, i) = w + 2i−1,
Sub(w, i) = w − 2i−1, and Enable(w, i) = 2i−1 ≤ w <
2i. Other scheduling schemes can be established by
defining appropriate formulas for the three functions
outlined above.

5. Case Study

In this section first we briefly introduce the archi-
tecture of an avionics application then we show how
we applied model-based methods to verify the preemp-
tive scheduling on a distributed, multi-processor plat-
form.

5.1. The Boeing Bold Stroke Architecture

The Boeing Bold Stroke architecture is a
component-based, publish/subscribe DRE system plat-
form built atop The ACE ORB [29]. Bold Stroke
uses a Boeing-specific real-time component middle-
ware called PRISM [27]. Following the CCM spec-
ification, PRISM defines typed ports, which are
named interfaces and connection points compo-
nents use to collaborate with each other. Operation

invocations follow the traditional synchronous block-
ing call/return semantics, where one component’s
receptacle is used to invoke an operation on an-
other component’s facet. PRISM’s event propagation
mechanism follows a non-blocking asynchronous pub-
lish/subscribe semantics supported by real-time event
channels connected via event sources/sinks.

Figure3.BoeingBoldStrokeExecutionPlatform

Figure 3 shows the runtime architecture of the
Bold Stroke execution platform, which consists of three
primary layers: (1) the ORB layer, which performs
(de)marshalling, connection management, data trans-
fer, event/request demultiplexing, error handling, con-
currency, and synchronization, (2) the real-time event
channel layer, which schedules and dispatches events
in accordance with their deadlines and other real-time
properties, and the application component layer, which
contain actions that are the smallest units of end-to-
end processing that Bold Stroke application develop-
ers can manipulate. The concurrency architecture im-
plements the Half-Sync/Half-Async pattern [30], where
a fixed pool of threads is generated in the server at the
initialization phase to process incoming requests.

Bold Stroke actions are largely event-driven and use
priority-based scheduling, where actions that have the
same priorities are scheduled non-preemptively in a pri-
ority band (also referred to as rate group) based on
the queueing policy (FIFO, MUF etc.) This queueing
policy is modeled by introducing subpriorities for the
tasks. Preemptive scheduling is used between priority
bands which usually correspond to individual threads.
Periodic real-time processing of frames is driven by un-
synchronized software timers that can drift apart from
each other, so component interactions are unrestricted



and unsynchronized. This approach is intentional [9]
and designed to increase flexibility and performance,
though it has the side-effect of impeding analyzabil-
ity.

We have shown in our previous work [24,23] that the
smallest unit of scheduling is an event-initiated action
together with all the remote calls it can invoke, since
they inherit the QoS properties of the calling thread.
Every action has a measured worst-case execution time
(WCET)1 in the given scenario in which it is used.

All processing inside a priority band must finish
within the fixed execution period of the timer assigned
to the band. This periodicity divides processing into
frames, which are defined by the rate/period of the
timer. A priority band failing to complete outputs prior
to the start of the next frame is said to incur a frame
overrun condition, where the band did not meet its
completion deadline (i.e., frame completion time).

5.2. Distributed Bold Stroke Application

In this section we show how we applied model-based
verification to a case study of a representative DRE
system from the domain of avionics mission comput-
ing. Figure 4 shows the component-based architecture
of the system, which is built on the Boeing Bold Stroke
real-time middleware described in Section 5.1.

Figure 4. Bold Stroke application deployed on a
preemptive multiprocessor platform

1 WCETs are computed by measuring the times corresponding to
executing the tasks numerous times in a loop. WCET times do
not include the time spent waiting to be scheduled and are as-
sumed independent of the scheduling policy.

The application is deployed on a preemptive mul-
tiprocessor platform. The RateGen 4x, RADAR and
TACTICAL STEERING components are deployed on the
same application server (CPU1) and are scheduled non-
preemptively. The other application server (CPU2)
is a multi-threaded server, where priorities are as-
signed to the threads. The real-time middleware maps
CORBA priorities to operating system-level priori-
ties and the OS scheduler manages preemptions.

The RateGen 2x, CURSOR DEVICE, SELECTED POINT
and
TACTICAL DISPLAY components are executed within
the context of the higher priority Thread2, the
RateGen, INS, GPS, AIRFRAME and NAV DISPLAY com-
ponents are executed within the context of the lower
priority Thread1.

Event propagations are denoted with small arrows
in Figure 4 which represent the binding between event
sources and sinks. Facets are represented by circles
which connect to the receptacles. We observe the fol-
lowing key challenges on the Bold Stroke example:

• Event flow, buffering: Event propagations re-
quire buffering of the events (i.e. for the AIRFRAME
component) and concurrency management be-
tween event channels which are publishing to the
same component (i.e. between the remote and lo-
cal event channels which publish events to
NAV DISPLAY).

• Delays: Communication between application
servers incur delays in the message propaga-
tion.

• Preemption: We have to manage concurrency be-
tween threads inside the application server (i.e.
Thread1 is periodically preempted by Thread2).

• Clock drifts: Timer components are not synchro-
nized and can drift from each other arbitrarily.

• Composition: The problems above can be summa-
rized as composition challenges. The schedulabil-
ity of individual threads do not guarantee the overall
schedulability of the system.

5.3. Preemption Model Using Discretized
Time

As discussed in Section ?? we provide a conservative
approximation of the actual scheduling policy by dis-
cretizing the time scale during preemptions. When im-
plementing this discretization, we had a choice whether
to (1) implement blocking preemptions, when the high
priority thread has to block until the next discrete time



Figure 5. Detected Deadlock with Counter Ex-
ample

step arrives, or (2) non-blocking preemptions when pre-
emptions take place instantaneously but all informa-
tion since the last time step is lost in the preempted
thread. The first case implies longer execution time
(than the parameter WCET time) in the high-priority
thread (most often the Timer), the second case implies
longer execution time in the low priority thread.

We chose to implement non-blocking preemptions
for three major reasons; (1) higher precision is desirable
on higher priority threads, (2) a blocking thread will
propagate its precision loss to every consumer, whereas
on non-blocking preemptions we only lose precision on
one consumer, (3) by blocking Timers we would unin-
tentionally synchronize them. The precision can be set
independently for every Uppaal Task model using the
granularity parameter.

5.4. Compositional Analysis Using Uppaal

To check whether a property holds we use the Up-
paal model checker tool [26]. In addition to simula-
tion, Uppaal provides built in support for manual
and automatic simulation. To improve efficiency, the
model checking algorithms in Uppaal are based on
clock constraints equivalence rather than state equiv-
alence. Systems in Uppaal are modeled as a slightly
modified variant of timed automata and the specifica-
tion is expressed in a restricted version of the timed
computational tree logic (TCTL) [5], which is temporal
logic that can formalize statements about system mod-
els. The Uppaal semantic domain combines timed au-
tomata with dataflow semantics that can be used to
express interactions between the automata.

Figure 6 shows how we modeled the system in the

Uppaal model checker tool. The application consits
of 12 components. The RateGen 1x, RateGen 2x and
RateGen 4x components are simple rate generators
which publish events at a predefined rate. We model
them using Timers in the DRE Semantic Domain.
The other 9 components are modeled using Tasks in
the DRE Semantic Domain.

To satisfy real-time constraints the PRISM com-
ponent middleware requires dedicated threads for
each real-time event channel – to avoid unneces-
sary thread spawn delays. In the DRE Seman-
tic Domain, however, we can abstract out some
of these threads as discussed in [24, 23], to re-
duce the number of event channels and thus the
state space. We have to model event channels ex-
plicitly (1) when we have to buffer events or (2)
on remote event channels which have measure-
able delays. We introduce the AIRFRAMElocalEC,
NAV DISPLAYlocalEC, TACTICAL DISPLAYlocalEC
channels to model buffering during local event prop-
agations and the TACTICAL DISPLAYremoteEC,
NAV DISPLAYremoteEC channels to express delays be-
tween the application servers denoted by CPU1 and
CPU2 on Figure 4.

The scheduling policies are represented by
Schedulers in the DRE Semantic Domain.
Since the Bold Stroke application is deployed on
a two-processor architecture we define two sched-
ulers as shown on Figure 6. The schedulers get
more and more complex according to the schedul-
ing policies. The design models (such as the model on
Figure 4) can be used to generate the scheduling poli-
cies as shown in [24,23].

Now that we have defined the elements in the DRE
SemanticDomain we show how their composition can
aid DRE system developers in the design and build
process. We start modeling the Bold Stroke applica-
tion shown in Figure 4 by composing same-priority
components and local event channels corresponding to
a thread. Priorities follow dependencies and are there-
fore fixed. We assign deadlines according to Theorem 1.
Table 1 shows the parameter values.

In the next step we compose the components to re-
flect the architecture of the implementation. This step
follows the imperative approach, while the task proper-
ties are declarative. We give a granularity value of 1 to
every task. Most tasks which never get preempted do
not need higher precision. Then we bind tasks with re-
mote event channels.

When checking the Bold Stroke application shown
in Figure 4 we were unable to show the schedulabil-
ity with rough precision (granularity = 1 for every
task). This does not imply an unschedulable sys-



Figure 6. Uppaal Timed Automata Models

Task P S WCET D G
RADAR HIGH HIGH 12 84 1

TACT ST... HIGH MEDIUM 16 88 1
CURS D... HIGH HIGH 18 155 1
SEL P... HIGH MEDIUM 24 161 1
TACT D... HIGH LOW 21 158 1

INS LOW HIGH 32 872 32
GPS LOW HIGH 29 869 29

AIRFRAME LOW MEDIUM 80 920 80
NAV D... LOW LOW 19 859 19

Table 1. Parameter Values for the Application
Shown in Figure 4

tem since we are approximating the real behavior.
In the next step we have increased the granular-
ity parameters to 1 millisecond precision in the pre-
empted tasks as shown in Table 1. This analysis has
shown that the system is schedulable with the pa-
rameters given in 1. In the next series of tests we
have checked whether the system operates with fi-
nite buffer sizes with the following TCTL formula:
A[] (Channel.bufferc < Channel.lambdac). Up-
paal produces a counter-example for invalid prop-
erties as shown on Figure 5, which helps identify-
ing the source of undesired behavior. Finally, we
checked that eventually every task will execute with:
E<> Task.executing.

6. Related Work

Several tools and methods have been developed
for the design, optimization, analysis and verification
of scheduling of various distributed real-time embed-
ded (DRE) systems. To deal with the space con-
straints, we just mention key results of the research
on Bold Stroke scheduling and verification, which are
the VEST, AIRES, Cadena and Time Weaver -
TimeWiz R© tools.

The Virginia Embedded Systems Toolkit
(VEST) [17] is a framework designed for the reli-
able and configurable composition and analysis of
component-based embedded systems from COTS li-
braries. VEST applies key checks and analysis but
does not support formal proof of correctness.

The Automatic Integration of Reusable Embedded
Systems (AIRES) tool extracts system-level depen-
dency information from the application models, includ-
ing event- and invocation-dependencies, and constructs
port- and component-level dependency graphs. It per-
forms real-time analysis [12] using Rate Monotonic
Analysis techniques.

The Cadena [13] framework is an integrated en-
vironment for building and analyzing CORBA Com-
ponent Model (CCM) based systems. Its main func-
tionalities include CCM code generation in Java, de-
pendency analysis and model-checking. The emphasis
of verification in Cadena is on software logical proper-
ties. The generated transition system does not repre-
sent time explicitly and requires the modeling of logi-
cal time that does not allow quantitative reasoning.

Time Weaver (Geodesic) [8] is a component-
based framework that supports the reusability of com-



ponents across systems with different para-functional
requirements. It supports code generation as well as
automated analysis. It performs model-based Rate-
Monotonic Analysis by real-time model checker tools
such as TimeWiz R©.

7. Concluding remarks

This paper presents the DRE Semantic Domain
used in the next generation Open-SourceDream [16]
model-based verification and analysis framework. We
have shown how to analyze and verify the preemptive
scheduling and composition of real-time embedded sys-
tems on unsynchronized distributed platforms and how
model-based verification provides a way to bridge the
gap between declarative specification and imperative im-
plementation. Our results show that this approach cap-
tures delays and drifts which are common in unsynchro-
nized reactive real-time systems and demonstrates that
timed automata can represent component interactions
and asynchronous event passing allowing the verifica-
tion of quantitative dense time properties. The verifica-
tion is automatic, exhaustive, and capable of producing
counter-examples that helps pinpoint sources of unde-
sired behavior. The proposed method is demonstrated
on the Boeing Bold Stroke avionics mission comput-
ing platform.

Key challenges for the upcoming Open-Source
Dream framework include optimizing multiple QoS
properties, thereby reducing nondeterminism in design-
time allowing better analyzability. Integrating real-
time middleware and multiple analysis tools into the
Open-Source Dream framework forms a key part of
our future work. The Uppaal models used for the case
study in Section 5 are available for download at [16].

References

[1] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno,
C.Passerone, andA.Sangiovanni-Vincentelli. Metropo-
lis: An Integrated Electronic System Design Environ-
ment. Computer, 36(4):45–52, 2003.

[2] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. The
IF Toolset. Formal Methods for the Design of Real-Time
Systems, LNCS 3185, pages 237–267, Sep 2004.

[3] C. Brooks, A. Cataldo, E. A. Lee, J. Liu, X. Liu,
S. Neuendorffer, and H. Z. (eds.). Hyvisual: A hybrid
system visual modeler. Technical report, University
of California, Berkeley, UCB ERL Technical Memoran-
dum UCB/ERL M04/18, 2004.

[4] J. Buck, S. Ha, E. A. Lee, and D. Messerschmitt.
Ptolemy: A Framework for Simulating and Prototyping
Heterogeneous Systems. International Journal of Com-
puter Simulation, special issue on Simulation Software
Development, 4:152–182, April 1994.

[5] E. Clarke and E. Emerson. Design and synthesis of syn-
chronisation skeletons using branching time temporal
logic. Logic of Programs, LectureNotes inComputer Sci-
ence, 131:52–71, 1981.

[6] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E.
Long, K. L. McMillan, and L. A. Ness. Verification of
the futurebus+ cache coherence protocol. In CHDL
’93: Proceedings of the 11th IFIP WG10.2 International
Conference sponsored by IFIP WG10.2 and in coopera-
tion with IEEE COMPSOC on Computer Hardware De-
scription Languages and their Applications, pages 15–
30. North-Holland, 1993.

[7] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The
tool KRONOS. InProceedings of the DIMACS/SYCON
workshop on Hybrid systems III : verification and con-
trol, pages 208–219. Springer-Verlag New York, Inc.,
1996.

[8] D. de Niz and R. Rajkumar. Time Weaver: A Software-
Through-Models Framework for Real-Time Systems. In
Proceedings of LCTES, 2003.

[9] B. S. Doerr and D. C. Sharp. Freeing Product Line Ar-
chitectures from Execution Dependencies. In Proceed-
ings of the 11thAnnual SoftwareTechnologyConference,
Apr. 1999.

[10] J. Edmund M. Clarke, O. Grumberg, and D. A. Peled.
Model checking. MIT Press, 1999.

[11] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-
based verification of web service compositions, 2003.

[12] Z. Gu, S. Wang, S. Kodase, and K. G. Shin. An End-to-
End Tool Chain for Multi-View Modeling and Analysis
of Avionics Mission Computing Software. In Proceed-
ings of Real-Time Systems Symposium, 2003.

[13] J. Hatcliff, X. Deng, M. B. Dwyer, G. Jung, and V. P.
Ranganath. Cadena: An Integrated Development,
Analysis, andVerificationEnvironment forComponent-
based Systems. In Proceedings of International Confer-
ence on Software Engineering, 2003.

[14] T. A. Henzinger, B. Horowitz, and C. M. Kirsch. Giotto:
A time-triggered language for embedded programming.
Lecture Notes in Computer Science, 2211:166+, 2001.

[15] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre.
Lazy abstraction. In POPL ’02: Proceedings of the 29th
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 58–70, New York, NY,
USA, 2002. ACM Press.

[16] http://dre.sourceforge.net. Distributed Real-time Em-
bedded Analysis Method. 2005.

[17] J.A. Stankovic and R. Zhu and R. Poornalingham and
C. Lu and Z. Yu and M. Humphrey and B. Ellis. VEST:
An Aspect-based Composition Tool for Real-time Sys-
tems. InProceedings of the IEEE Real-time Applications
Symposium, 2003.

[18] R. John Hatcliff, Matthew B. Dwyer. Bogor: An Ex-
tensible Framework for Domain-Specific Model Check-
ing. Technical report, Kansas State University, Decem-
ber 2004.



[19] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty.
Model-Integrated Development of Embedded Software.
IEEE, 91:145–164, Jan. 2003.

[20] P. Krčál and W. Yi. Decidable and Undecidable
Problems in Schedulability Analysis Using Timed Au-
tomata. In K. Jensen and A. Podelski, editors, Proc. of
TACAS’04, Barcelona, Spain., volume 2988 of Lecture
Notes in Computer Science, pages 236–250. Springer–
Verlag, 2004.

[21] K. G. Larsen, P. Pettersson, and W. Yi. Uppaal in a
Nutshell. Int. Journal on Software Tools for Technology
Transfer, 1(1–2):134–152, Oct. 1997.

[22] E. A. Lee. Concurrent Models of Computation for Em-
bedded Software. Technical report, University of Cal-
ifornia, Berkeley, UCB ERL Technical Memorandum
UCB/ERL M05/2, 2004.

[23] G.Madl, S.Abdelwahed, andG.Karsai. AutomaticVer-
ification of Component-Based Real-Time CORBA Ap-
plications. InProceedings of the 25th IEEE International
Real-Time Systems Symposium, pages 231–240, Decem-
ber 2004.

[24] G. Madl, S. Abdelwahed, and D. C. Schmidt. Verify-
ing Distributed Real-time Properties of Embedded Sys-
tems via Graph Transformations and Model Checking
(invited paper, submitted). The International Journal
of Time-Critical Computing, 2005.

[25] Object Management Group. CORBA Component
Model. 2002.

[26] P. Pettersson and K. G. Larsen. Uppaal2k. Bulletin of
the European Association for Theoretical Computer Sci-
ence, 70:40–44, feb 2000.

[27] W. Roll. Towards Model-Based and CCM-Based Ap-
plications for Real-Time Systems. In ISORC ’03: Pro-
ceedings of the Sixth IEEE International Symposium
on Object-Oriented Real-Time Distributed Computing
(ISORC’03), pages 75–82. IEEE Computer Society,
2003.

[28] J. Rushby. Systematic formal verification for fault-
tolerant time-triggered algorithms. In M. D. Cin,
C. Meadows, and W. H. Sanders, editors, Depend-
able Computing for Critical Applications—6, volume 11,
pages 203–222, Garmisch-Partenkirchen, Germany,
1997. IEEE Computer Society.

[29] D. C. Schmidt, A. Gokhale, T. H. Harrison, and
G. Parulkar. A High-Performance Endsystem Archi-
tecture for Real-Time CORBA. IEEE Communications
Magazine, 14(2), 1997.

[30] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann.
Pattern-Oriented Software Architecture: Patterns for
Concurrent and Networked Objects, Volume 2. Wiley
& Sons, New York, 2000.

[31] Sun Microsystems. Java 2 Platform, Enterprise Edition
(J2EE) v1.4. 2003.

[32] J. Sztipanovits and G. Karsai. Model-Integrated Com-
puting. IEEE Computer, pages 110–112, Apr. 1997.

[33] J. Sztipanovits, G. Karsai, and H. Franke. Model-
IntegratedProgramSynthesisEnvironment. InProceed-
ings of the IEEE Symposium on Engineering of Com-
puter Based Systems, pages 348–355, March 2000.


	Introduction
	Problem Formulation
	Model-Based Verification
	The DRE Semantic Domain
	Syntax
	Semantics
	Time and Clocks
	System State
	System Events
	System Transitions and Trajectories

	Timed Automata Models
	The Timer
	The Task
	The Event Channel
	The Scheduler


	Case Study
	The Boeing Bold Stroke Architecture
	Distributed Bold Stroke Application
	Preemption Model Using Discretized Time
	Compositional Analysis Using Uppaal

	Related Work
	Concluding remarks

