
Domain-specific Modeling of Power Aware Distributed
Real-time Embedded Systems

Gabor Madl, Nikil Dutt
{gabe, dutt}@ics.uci.edu

Center for Embedded Computer Systems
University of California, Irvine, CA 92697, USA?

Abstract. This paper provides two contributions to the research on applying
domain-specific modeling languages to distributed real-time embedded (DRE)
systems. First, we present the ALDERIS platform-independent visual language
for component-based system development. Second, we demonstrate the use of
the ALDERIS language on a helicopter autopilot DRE design. The ALDERIS

language is based on the concept of platform-based design, and explicitly cap-
tures asynchronous event-driven component interactions as well as the underly-
ing platform for the computation. Unlike most modeling languages, ALDERIS has
formally defined semantics providing a way for the formal verification of dense
real-time properties and energy consumption.

1 Introduction

Component-based design is an emerging principle for the engineering of complex high-
availability distributed real-time embedded (DRE) systems. It has been successfully
applied in the domains of hardware design [1], QoS-aware middleware [2], and intel-
lectual property (IP) reuse [3], among others. Components provide an intuitive way
to reuse proven designs and implementation, shifting the focus from development by
construction to development by composition.

Despite recent advances in component-based system design, several key challenges
remain that make it hard to develop complex DRE systems with hard QoS-support.
Mission-critical system design requires a paradigm shift from conventional methods;
the worst case behavior of components have to be considered instead of the average be-
havior. QoS-support has to be an integral part of the design process providing a way for
the rapid evaluation of system designs on a formal basis. To provide a practical model-
ing language for embedded systems one has to consider how to express multiple QoS
properties using the same language. Designers have to provide a method that allows to
find a balance between various properties such that the system as a whole satisfies all
major design constraints.

Domain-specific modeling languages (DSMLs) are languages targeting a well-defined
application domain. This approach is rather different from mainstream modeling ef-
forts that focus on creating a language for a wide range of applications, such as UML.
DSMLs in our approach are defined using meta-modeling [4] therefore the designer

? This research was partially supported by the NSF Grant ACI-0204028



has the option of creating languages that have well defined semantics and are a good
fit for a problem domain. Large-scale systems that involve several application domains
are modeled as a composition of DSMLs. We believe that defining semantics to smaller
modeling languages and their composition is more likely to succeed than to define it for
a large generic modeling language.

This paper presents the Analysis Language for Distributed, Embedded and Real-
time Systems (ALDERIS) DSML. ALDERIS is a specification language for power aware
distributed real-time embedded systems. The language captures dense (continuous-
scale) real-time properties on a distributed platform, and energy savings methods based
on frequency- and voltage-scaling. ALDERIS provides a way for the design-time for-
mal verification of system models as well as automated simulation. We also present an
equivalent compact XML representation that is the input language of the open-source
Distributed Real-time Embedded Analysis (DREAM) tool. DREAM implements several
analysis and optimization algorithms [5] and also supports formal verification based on
the UPPAAL [6] and IF toolsets [7].

The remainder of the paper is organized as follows: Section 2 describes the ALDERIS
language its design by meta-modeling, Section 3 describes a case study that demon-
strates the use of the ALDERIS modeling language, Section 4 compares the results with
related work on the field, and Section 5 presents concluding remarks.

2 The ALDERIS Domain-specific Modeling Language

This section describes the ALDERIS DSML and its role in our model-based analysis
framework. The formal semantics of ALDERIS is described in [5]. We formalize an
abstract model of computation that can express dense real-time properties and power
consumption in a common semantic domain. We propose a platform-based analysis of

Fig. 1. Model-based Analysis Framework based on ALDERIS and DREAM



DRE systems consisting of two major aspects: dependency, which describes various
relations and dependencies between tasks, and platform, which specifies the platform
that executes the tasks. We capture both these aspects in ALDERIS by specifying the
event flow between tasks and their mappings to platform processors.

The ALDERIS language has both visual and textual concrete syntax. Subsection 2.2
describes how we used the meta-modeling to specify the visual syntax of ALDERIS
using the Generic Modeling Environment (GME) [8] tool by specifying elements and
associations between them. Associations can express various relations such as contain-
ment, inheritance etc. The textual syntax of ALDERIS is based on XML schemas that
provides an easy way to exchange the models between various tools. The XML repre-
sentation has the same abstract syntax as the visual models.

Figure 1 shows an overview of the model-based analysis framework based on ALDERIS
and DREAM. ALDERIS models can directly be analyzed using the DREAM tool. The
DREAM tool is based on the timed automata [9] model of computation and implements
algorithms for (1) real-time verification using the UPPAAL [6] and Verimag IF [7] tools,
(2) simulation-based verification of non-preemptive systems based on a discrete event
scheduler [5], and (3) power management policy synthesis using the UPPAAL tool [5].
The timed automata models are automatically generated from ALDERIS models as de-
scribed in [10]. This paper describes the format of the visual and textual ALDERIS
models in a simple helicopter autopilot case study. We illustrate the use of the timed
automata-based analysis in Section 3. However, the ALDERIS DSML does not assume
the timed automata formalism and allows the use of other models of computation such
as data-flow or Petri-nets. For the detailed discussion of analysis methods already im-
plemented in DREAM please see [5, 10].

2.1 Syntax

The ALDERIS model of computation is a tuple M = {T,C,T R,T H,PR} where T is a
set of tasks, C is a set of event channels, T R is a set of timers which are special tasks
that publish events at a given rate, T H is a set of threads that represent tasks that are
scheduled non-preemptively, and PR is a set of platform processors. Tasks and timers
are assigned to execute on a specific thread and processor. The thread associated with a
given task or timer is specified by the map Thread : T ∪T R → T H, and the processor
associated with a given thread is specified by the map Processor : T H → PR. Timers
generate periodic events as specified by the map Period : T R→N+. Tasks are attributed
by the properties priority, sub-priority, deadline, worst case execution time, best case
execution time specified by the mappings p(t) : T → N+, sp(t) : T → N+, deadline(t) :
T → N+, wcet(t) : T → N+, bcet(t) : T → N+. We write State(t,x) to denote the state
of t at (global) time xg: (∀t ∈ T )(∀x ∈ N) State(t,x) ∈ {init,wait,run,pass}.

2.2 Specifying the ALDERIS DSML using Meta-modeling

The ALDERIS language is expressive enough to capture a wide range of DRE sys-
tems [5]. This section demonstrates how the concepts of model-integrated computing
(MIC) [4] can be utilized to define the ALDERIS DSML. MIC promotes a metamodel-
based approach for powerful domain-specific abstractions that capture key concepts and



Fig. 2. Specifying the ALDERIS DSML using Meta-modeling

concerns of DRE systems, such as their structure, behavior, and environment, as well
as the QoS properties they must satisfy.

GME [8] is an MIC toolsuite that provides a visual interface to simplify the devel-
opment of domain-specific modeling languages (DSMLs). GME contains a metamodel-
ing environment that supports the definition of paradigms, which are type systems that
describe the roles and relationships in particular domains. GME has a flexible object-
oriented type system that supports inheritance and instantiation of elements of DSMLs.

Figure 2 illustrates the specification of the ALDERIS language using the GME meta-
model, which is a variation of UML class diagrams. The figure shows a part of the
ALDERIS meta-model with its corresponding visual representation in GME. The curvy
arrows show how individual modeling elements and their relations are defined by dif-
ferent parts of the meta-model. The ALDERIS modeling language is automatically syn-
thesized from the meta-model by the GME tool. The next section describes how the
synthesized ALDERIS DSML is used to model power aware DRE systems.

3 Applying ALDERIS to Helicopter Autopilot Design

This section describes a small-scale helicopter autopilot case study to illustrate the use
of the ALDERIS modeling language. Please see our technical report [5] for more de-
tailed discussion, performance analysis and large-scale examples, and the underlying
analysis methods based on timed automata model checking methods and simulations.



Fig. 3. The Dependency Aspect of the Autopilot Design

Helicopter controllers are well-known real-time mission-critical systems, since he-
licopters inherently have unstable flight modes that have to be avoided, otherwise the
safety of the helicopter can be at risk. Although energy consumption is not a traditional
problem domain for autopilot design, the wider adoption of unmanned aerial vehicles
(UAVs) will require cheaper and smaller DRE systems where power consumption is an
essential design constraint. Traditional engineering practices used in airplane and heli-
copter design involve extensive testing and validation that is too costly for UAV design.
ALDERIS provides a simple modeling language to experiment, evaluate, and formally
verify power aware DRE systems.

Figure 3 shows the dependency aspect of the autopilot application. Dependencies
are captured using generic (not synchronous) dataflow semantics, following the pub-
lisher/subscriber communication pattern [11]. The event channels serve two major pur-
poses in the design: (1) they can model delays in the communication between tasks
and components. The event channel captures delays as intervals similarly to the tasks’
execution intervals. (2) Event channels provide simple FIFO buffering between tasks
and components alleviating the need to synchronize communication between the event
sources (publishers) and the event sinks (subscribers).

The dependency aspect focuses mainly on the software components and their inter-
actions. The autopilot consists of 3 major components and a few tasks that represent
simple sensors and actuators. There are 3 timers in the system (Gyro Rate, INS Rate,
and Radio Rate) that drive the computations with different rates. The top part of Fig-
ure 3 shows the tail rotor controller. The Gyro component reads the gyroscope sensor
values and is connected directly to the tail servo that controls the tail rotor speed. This



Fig. 4. The Platform Aspect of the Autopilot Design

setup provides fast response times resulting in stable tail movement, and is therefore
commonly used in helicopters.

The INS component represents the internal navigation system of the helicopter, and
is based on several sensors such as the inertial measurement unit, compass, and/or GPS
devices. The INS component implements computationally more expensive functional-
ities than the Gyro component. Instructions for the autopilot may be transmitted over
the radio that is handled by the receiver. The received message together with the INS
data is fed into the Pitch component that controls the cyclic and collective pitch of the
main rotor. The control signal is sent to the servos/actuators ”steering” the aircraft as
necessary.

Figure 4 shows the platform aspect of the autopilot case study. There is one main
CPU in the system that schedules the Control Thread and Radio Thread preemp-

Task WCET BCET DL P

Gyro 3 2 5 -
Tail Servo 1 1 2 -
INS Task 4 2 5 high

Pitch Task 2 1 7 high
Main Servos 2 2 3 -
Receiver 3 3 20 low

Channel WCDelay BCDelay

Gyro Channel 2 1
INS Channel 3 2

Pitch Channel 3 1
Receiver Channel 4 2

Table 1. Timing Information for the Autopilot Case Study



<?xml version="1.0" encoding="UTF-8"?>
<DRESystem xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="alderis.xsd" name="helicopter autopilot" version="1.0">

<DependencyAspect>
<Node>

<Task name="Gyro" deadline="2" subpriority="1" wcet="1"/>
...<Channel name="Gyro Channel" buffersize="2"/>
...<Timer name="Gyro Rate" period="5"/>

<Hierarchy>
<Component name="INS">

<TaskContainment task="INS Task"/>
</Component>
...</Hierarchy>

<Dependency>
<TimerToTask timer="Gyro Rate" task="Gyro"/>
...<TaskToChannel task="Gyro" channel="Gyro Channel"/>
...<ChannelToTask channel="Gyro Channel" task="Tail Servo"/>
...</Dependency>

</DependencyAspect>
<PlatformAspect>

<Thread name="Control Thread" priority="1" queueingpolicy="FixedPriority">
<TimerMapping timer="INS Rate"/>
<ComponentMapping component="INS"/>
...</Thread>

<CPU name="Main CPU" schedulingpolicy="FixedPriority">
<QoSLevel speed="2" power="4"/>
...<ThreadMapping thread="Control Thread"/>
...</CPU>

<CPU name="NonConcurrentManager" schedulingpolicy="NonConcurrent">
<ThreadMapping thread="NonConcurrent"/></CPU>

</PlatformAspect>
</DRESystem>

Fig. 5. Partial ALDERIS XML Representation for the Helicopter Autopilot

tively based on their priorities. The assignment of tasks and timers to the two threads is
shown with dashed lines. The event channels and some of the simple tasks represent-
ing sensors and actuators are not mapped to the main CPU as these components are
scheduled non-concurrently. The reason for this in the case of sensors/actuators is that
they have their own hardware and their execution depends solely on their own states.
The event channels model delays and the buffering of the network layer which does not
require further scheduling. Priorities for the threads and sub-priorities for the tasks are
represented in the model as simple attributes that can be updated using the visual GUI.
The possible execution speeds and their corresponding power levels can be specified as
QoS-level attributes of the Main CPU. In the helicopter autopilot case study we assume
that Main CPU has a full speed and a half-speed mode, and that tasks that execute in the
full speed mode consume 4 times as much energy.

Figure 4 shows how we modeled these two QoS-levels by introducing two QoSLevel
atoms and associating them with the CPU. Any number of QoS-levels can be modeled
this way, however ALDERIS cannot capture voltage scaling on a continuous scale. This
method provides a way to capture dynamic voltage scaling as well as frequency scaling
by specifying the relation between execution speed and its corresponding power level
for each QoS-level. Algorithmic methods can utilize this information to obtain a power
management policy that respects real-time guarantees. Please see [5] for the thorough
discussion of the timed automata-based method for power management policy synthe-



Fig. 6. Unschedulable Execution Trace Detected using Timed Automata Models

sis, and the timed automata models generated from ALDERIS. Figure 5 shows the XML
representation of the helicopter autopilot case study shown in Figure 3 and Figure 4.
The XML format is specified using schemas and provides a simple method to exchange
ALDERIS models between tools.

Table 1 shows the parameters assigned to the case study. We have analyzed the
helicopter autopilot case study using these parameters using the DREAM tool, and found
that it is unschedulable because the INS component misses its deadline. At first this
seems strange as the INS component is deployed on the high-priority Control Thread,
and depends only on the INS Rate timer, therefore it should not wait for low-priority
tasks.

A great advantage of the model checking method is that whenever a property is
violated a counter-example can be automatically obtained. Figure 6 illustrates the ex-
ecution trace of the counter-example generated by the UPPAAL model checker. The
reason behind the missed deadline is that the Pitch component may already been ex-
ecuting when the INS component becomes enabled. Since non-preemptive scheduling
is used between tasks deployed on the same thread the INS component has to wait for
the Pitch component to finish its execution. To compensate for this hidden dependency
between the INS and Pitch component we have increased the deadline of the INS com-
ponent to 7 units which turns the system schedulable. Moreover, our analysis shows
that if we specify 10 units deadline for the INS and Pitch components the processor
can save 24% energy by switching to the half speed mode during the execution of these
tasks.



The performance of the timed automata-based verification scales exponentially with
respect to the number of tasks. Verifying the example shown in Figure 3 and 4 takes
around 2 seconds on a 1.6GHz Pentium 4-M processor with 768 MB memory running
the Windows XP OS. Please see [5, 10] for the detailed discussion on the verification
method.

4 Related Work

The SAE AADL is an international standard avionics architecture description language.
AADL is a successor of the Honeywell MetaH toolset [12], a commercially available
domain-specific architecture description language (ADL) for developing reliable, real-
time multiprocessor avionics system architectures. AADL, however, does not consider
energy savings as an objective. In contrast, ALDERIS targets power aware DRE systems.

Ptolemy II [13] is a complex modeling framework that composes heterogeneous
models of computation to simulate and evaluate embedded systems. Although the MoCs
and their composition is formally defined the focus in Ptolemy II is simulation, not ver-
ification. In contrast, ALDERIS and the DREAM tool provide a way for formal verifica-
tion of dense timed systems using several model checkers.

The SYSWEAVER [14] toolset is a component-based framework that supports the
reusability of components across systems with different requirements. It supports code
generation, as well as automated analysis based on Matlab/Simulink and real-time rate-
monotonic analysis tools, such as the TIMEWIZ model-checker. In contrast, ALDERIS
focuses on dense time formal verification using the asynchronous event-driven paradigm.

The CADENA [15] framework is an integrated environment for building and analyz-
ing CORBA Component Model (CCM) based systems. Its main functionality includes
CCM code generation in Java, dependency analysis, and model-checking. The empha-
sis of verification in Cadena is on software logical properties. In contrast, ALDERIS
represents time and power levels explicitly and allows dense time verification.

The Component Synthesis using Model Integrated Computing (COSMIC) [16] toolkit
is an integrated collection of DSMLs that support the development, configuration, de-
ployment, and evaluation of DRE systems based on CIAO, which is an implementation
of the CORBA Component Model that is integrated with Real-time CORBA. The major
focus of COSMIC is software development, and does not support formal verification.

The Virginia Embedded Systems Toolkit (VEST) [17] is a framework designed for
the reliable and configurable composition and analysis of component-based embed-
ded systems from COTS libraries. VEST applies key checks and analysis but - unlike
ALDERIS and the DREAM tool - does not support formal proof of correctness.

5 Concluding Remarks

This paper presents the ALDERIS domain-specific modeling language for component-
based power aware distributed real-time embedded systems with both visual and XML
textual syntaxes. ALDERIS explicitly captures component interactions as well as the
platform for computations providing an abstract framework for formal verification and



analysis. The ALDERIS meta-model is available for download at http://alderis.ics.uci.edu.
Models developed using ALDERIS can be verified and analyzed using the open-source
DREAM tool available for download at http://dre.sourceforge.net.

References

1. Alberto Sangiovanni-Vincentelli: Defining Platform-based Design. EEDesign of EETimes
(2002)

2. Schmidt, D.C.: Model-driven engineering. IEEE Computer 39(2) (2006)
3. Daniel D. Gajski and Allen C.-H. Wu and Viraphol Chaiyakul and Shojiro Mori and Tom

Nukiyama and Pierre Bricaud: Essential Issues for IP Reuse. In: Asia and South Pacific
Design Automation Conference (ASP-DAC 2000). (2000) 37 – 46

4. Sztipanovits, J., Karsai, G.: Model-Integrated Computing. IEEE Computer (1997) 110–112
5. Madl, G., Dutt, N.: Tutorial for the Open-source DREAM Tool. In: CECS Technical Report.

(2006)
6. Pettersson, P., Larsen., K.G.: UPPAAL2k. Bulletin of the European Association for Theoret-

ical Computer Science 70 (2000) 40–44
7. Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J.: The IF Toolset. Formal Methods for the

Design of Real-Time Systems, LNCS 3185 (2004) 237–267
8. Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J.: Composing

Domain-Specific Design Environments. Computer (2001) 44–51
9. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2)

(1994) 183–235
10. Madl, G., Abdelwahed, S., Schmidt, D.C.: Verifying Distributed Real-time Properties of

Embedded Systems via Graph Transformations and Model Checking (accepted). The Inter-
national Journal of Time-Critical Computing (2006)

11. Schmidt, D.C., Stal, M., Rohnert, H., Buschmann, F.: Pattern-Oriented Software Architec-
ture: Patterns for Concurrent and Networked Objects, Volume 2. Wiley & Sons, New York
(2000)

12. Vestal, S.: Formal Verification of the MetaH Executive Using Linear Hybrid Automata. In:
RTAS ’00: Proceedings of the Sixth IEEE Real Time Technology and Applications Sympo-
sium (RTAS 2000), Washington, DC, USA, IEEE Computer Society (2000) 134

13. Lee, E.A., Hylands, C., Janneck, J., II, J.D., Liu, J., Liu, X., Neuendorffer, S., Stewart,
S.S.M., Vissers, K., Whitaker, P.: Overview of the ptolemy project. Technical Report
UCB/ERL M01/11, EECS Department, University of California, Berkeley (2001)

14. de Niz, D., Bhatia, G., Rajkumar, R.: Model-Based Development of Embedded Systems:
The SysWeaver Approach. In: Proceedings of the 12th IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS’06). (2006) 231–242

15. Hatcliff, J., Deng, X., Dwyer, M.B., Jung, G., Ranganath, V.P.: Cadena: An Integrated De-
velopment, Analysis, and Verification Environment for Component-based Systems. In: Pro-
ceedings of International Conference on Software Engineering. (2003)

16. Gokhale, A., Balasubramanian, K., Balasubramanian, J., Krishna, A.S., Edwards, G.T.,
Deng, G., Turkay, E., Parsons, J., Schmidt, D.C.: Model Driven Middleware: A New
Paradigm for Deploying and Provisioning Distributed Real-time and Embedded Applica-
tions. The Journal of Science of Computer Programming: Special Issue on Model Driven
Architecture (2005 (to appear))

17. Stankovic, J., Zhu, R., Poornalingham, R., Lu, C., Yu, Z., Humphrey, M., Ellis, B.: VEST:
An Aspect-based Composition Tool for Real-time Systems. In: Proceedings of the IEEE
Real-time Applications Symposium. (2003)


