Model-based Analysis of Event-driven Distributed Real-time Embedded Systems

Gabor Madl

University of California, Irvine Bren School of Computer Science

Committee

- Chancellor's Professor Nikil Dutt (Chair)
- Professor Tony Givargis
- Professor Ian Harris

Ph.D. Dissertation Defense, 2009

Outline

- Introduction; Distributed Real-time Embedded (DRE) systems.
- Formal Modeling; the ALDERIS Domain-specific Modeling Language (DSML).
- Real-time Verification by Timed Automata (non-preemptive) [3, 7, 8, 9].
- Performance Estimation by Discrete Event Simulations (DES) [5].
- Conservative Approximation of Preemptive Scheduling by Timed Automata [4].
- Ombining Simulations and Model Checking for MPSoCs [1,6].
- Cross-abstraction Analysis of MPSoCs [2].
- **I** The Open-source DREAM Framework [10].

Distributed Real-time Embedded Systems

The Platform for the Implementation of Cyber-Physical Systems

- As embedded systems become increasingly networked, and interact with the physical environment, Cyber-Physical Systems (CPS) emerge.
 - Run in open-environments, in less predictable conditions than previous generations of embedded systems.
- Distributed Real-time Embedded (DRE) systems provide a highly
 - Provide a platform for the implementation of CPS.
 - Range from small-scale Multi-processor Systems-on-Chip (MPSoCs) to
- Component-based design is an emerging design paradigm.
 - Shifts focus to a build-by-composition methodology.

< □ > < 同 > < 回 > < Ξ > < Ξ

Distributed Real-time Embedded Systems

The Platform for the Implementation of Cyber-Physical Systems

- As embedded systems become increasingly networked, and interact with the physical environment, Cyber-Physical Systems (CPS) emerge.
 - Run in open-environments, in less predictable conditions than previous generations of embedded systems.
- Distributed Real-time Embedded (DRE) systems provide a highly adaptive and flexible infrastructure for reusable resource management services.
 - Provide a platform for the implementation of CPS.
 - Range from small-scale Multi-processor Systems-on-Chip (MPSoCs) to complex software-intensive systems applied to avionics, shipboard computing, power grids.

• Component-based design is an emerging design paradigm.

Shifts focus to a build-by-composition methodology.

Distributed Real-time Embedded Systems

The Platform for the Implementation of Cyber-Physical Systems

- As embedded systems become increasingly networked, and interact with the physical environment, Cyber-Physical Systems (CPS) emerge.
 - Run in open-environments, in less predictable conditions than previous generations of embedded systems.
- Distributed Real-time Embedded (DRE) systems provide a highly adaptive and flexible infrastructure for reusable resource management services.
 - Provide a platform for the implementation of CPS.
 - Range from small-scale Multi-processor Systems-on-Chip (MPSoCs) to complex software-intensive systems applied to avionics, shipboard computing, power grids.
- Component-based design is an emerging design paradigm.
 - Shifts focus to a build-by-composition methodology.

Composing Time- and Event-Driven DRE Systems

Time-triggered Distributed Real-time Embedded (TTDRE)

- Extend the concepts of the *time-triggered architecture*.
- Time is synchronized to a global clock, high *predictability*.
- Strong in real-time aspect, weak in distributed and embedded.

Asynchronous Event-driven Distributed Real-time Embedded (AEDRE)

- Reactive, event-driven communication paradigm.
- Better utilization, energy consumption than TTDRE.
- Strong in distributed and embedded aspect.

Image: Image:

.

Composing Time- and Event-Driven DRE Systems

Time-triggered Distributed Real-time Embedded (TTDRE)

- Extend the concepts of the *time-triggered architecture*.
- Time is synchronized to a global clock, high *predictability*.
- Strong in real-time aspect, weak in distributed and embedded.

Asynchronous Event-driven Distributed Real-time Embedded (AEDRE)

- Reactive, event-driven communication paradigm.
- Better utilization, energy consumption than TTDRE.
- Strong in distributed and embedded aspect.

1 Definition of a formal semantic domain for AEDRE systems.

- Based on timed automata and discrete event systems.
- A model checking method for the real-time verification of non-preemptive DRE systems by timed automata.
 - Abstract model of dependencies and platform.
- A performance estimation method for DRE systems by Discrete Event Simulations (DES).
 - CPU-bound real-time analysis method, can achieve 100% coverage.
- A conservative approximation method for the verification of preemptive DRE systems by timed automata.
 - First decidable method for the real-time model checking of AEDRE systems.

< ロ > < 同 > < 三 > < 三

Optimition of a formal semantic domain for AEDRE systems.

- Based on timed automata and discrete event systems.
- A model checking method for the real-time verification of non-preemptive DRE systems by timed automata.
 - Abstract model of dependencies and platform.
- A performance estimation method for DRE systems by *Discrete Event Simulations (DES)*.
 - CPU-bound real-time analysis method, can achieve 100% coverage.
- A conservative approximation method for the verification of preemptive DRE systems by timed automata.
 - First decidable method for the real-time model checking of AEDRE systems.

< ロ > < 同 > < 三 > < 三

Definition of a formal semantic domain for AEDRE systems.

- Based on timed automata and discrete event systems.
- A model checking method for the real-time verification of non-preemptive DRE systems by timed automata.
 - Abstract model of dependencies and platform.
- A performance estimation method for DRE systems by *Discrete Event Simulations (DES)*.
 - CPU-bound real-time analysis method, can achieve 100% coverage.
- A conservative approximation method for the verification of preemptive DRE systems by timed automata.
 - First decidable method for the real-time model checking of AEDRE systems.

Optimition of a formal semantic domain for AEDRE systems.

- Based on timed automata and discrete event systems.
- A model checking method for the real-time verification of non-preemptive DRE systems by timed automata.
 - Abstract model of dependencies and platform.
- A performance estimation method for DRE systems by *Discrete Event Simulations (DES)*.
 - CPU-bound real-time analysis method, can achieve 100% coverage.
- A conservative approximation method for the verification of preemptive DRE systems by timed automata.
 - First decidable method for the real-time model checking of AEDRE systems.

Key Contributions

Application Domains Investigated in this Dissertation

- The domain of software-intensive DRE systems, in the context of the *Boeing Bold Stroke* execution platform.
- The cross-abstraction analysis of multimedia Multi-Processor Systems-on-Chip (MPSoCs).
- The novelty of our approach:
 - Combining formal methods and symbolic simulations.
 - Utilizing multiple abstractions to trade off analysis accuracy in scalability.

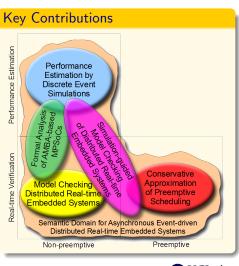


Image: A match a ma

Application Domains Investigated in this Dissertation

- The domain of software-intensive DRE systems, in the context of the *Boeing Bold Stroke* execution platform.
- The cross-abstraction analysis of multimedia Multi-Processor Systems-on-Chip (MPSoCs).

The novelty of our approach:

- Combining formal methods and symbolic simulations.
- Utilizing multiple abstractions to trade off analysis accuracy in scalability.

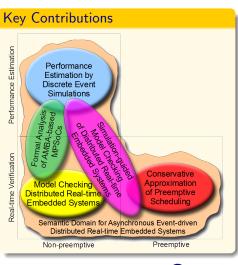


Image: A match a ma

Application Domains Investigated in this Dissertation

- The domain of software-intensive DRE systems, in the context of the *Boeing Bold Stroke* execution platform.
- The cross-abstraction analysis of multimedia Multi-Processor Systems-on-Chip (MPSoCs).

The novelty of our approach:

- Combining formal methods and symbolic simulations.
- Utilizing multiple abstractions to trade off analysis accuracy in scalability.

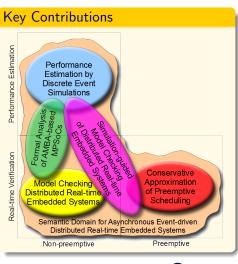


Image: Image:

Final Defense 6 / 40

Model-based Design and Analysis of DRE Systems

- Design flow driven by DSM, a high-level specification that captures key properties.
- DSM mapped to formal executable model for verification and evaluation.
- Formal models drive functional verification.
- Combine simulations and formal methods.

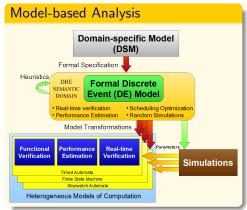


Image: A matrix

- ∢ ∃ ▶

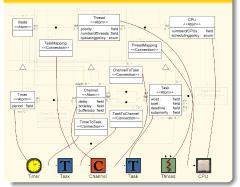
Final Defense 7 / 40

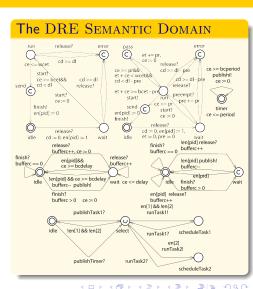
Specifying the ALDERIS DSML by Meta-modeling

The ALDERIS DSML is a 6-tuple $A = \{T, C, TR, TH, M, D\}$ where:

- T is a set of tasks,
- C is a set of communication channels: C ⊆ T,
- TR is a set of *timers*: $TR \subseteq T$,
- TH is a set of execution threads,
- *M* is a set of *machines*.
- *D* is the task dependency relationship: *D* ⊆ *T* × *T*.

Specifying DSMLs by Meta-modeling

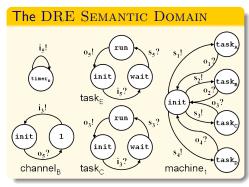



Image: Image:

The DRE SEMANTIC DOMAIN

Timed Automata Representation

- Timer: publishes events at periodic time intervals.
- Nonp Task: models computation time.
- Task: approximates a preemptable task.
- Buffer: models FIFO, allows non-blocking communication.
- Channel: Buffer with delay.
- Scheduler: specifies the scheduling policy.



The DRE SEMANTIC DOMAIN

Discrete Event Representation

A discrete event system is a 5-tuple $G = (Q, \Sigma, \delta, q_0, Q_m)$

- Q is a finite set of states,
- Σ is a finite alphabet of *event labels*,
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function,
- q₀ is the initial state,
- and Q_m is the set of *marker states* (exiting states).

Model-based Analysis

Real-time Verification by Timed Automata

- DSM specified using ALDERIS.
- ALDERIS mapped to timed automata by DREAM.
- Model check timed automata by UPPAAL or Verimag IF.
- Applied to software-intensive DRE systems.

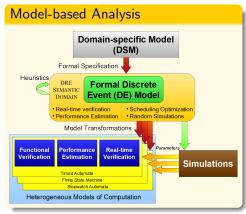
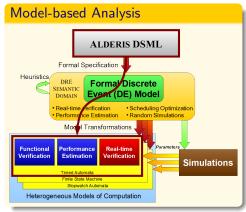
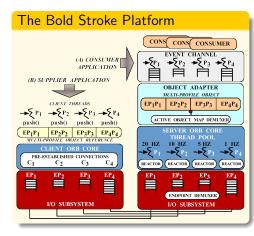



Image: A match a ma

Real-time Verification by Timed Automata

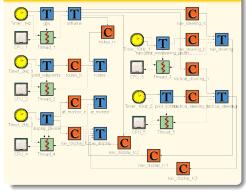
- DSM specified using ALDERIS.
- ALDERIS mapped to timed automata by DREAM.
- Model check timed automata by UPPAAL or Verimag IF.
- Applied to software-intensive DRE systems.


- ∢ ∃ →

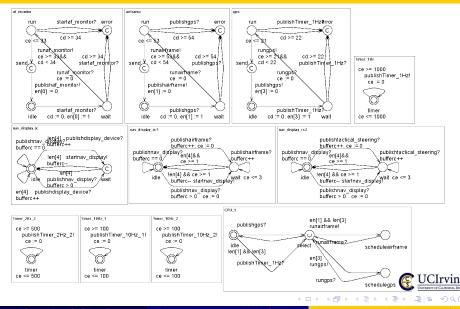
Final Defense 11 / 40

The Boeing Bold Stroke Execution Platform

- Real-time CORBA avionics application.
- Software timers, asynchronous event propagation.
- Thread pool policy: *half-sync half-async*.
- Event channels have their own thread, asynchronous message invocation (AMI).



Modeling The DRE Avionics Application by ALDERIS

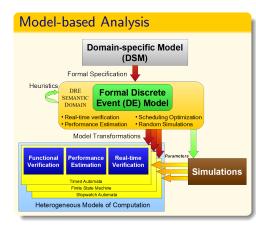

- Non-preemptive multi-processor platform.
- 5 Timers on 5 CPUs.
- Captures dependencies and event flow.
- Communication delays modeled as Channels.
- Problem: deciding schedulability.

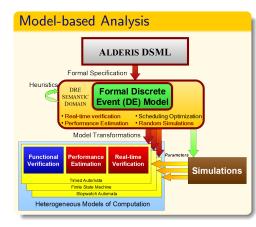
Avionics DRE Application

Partial Timed Automata Model of the Application

Performance Estimation by DES

- DSM specified using ALDERIS.
- ALDERIS utilized by DREAM using discrete event semantics.
- Use DREAM for performance estimation or real-time verification.
- Applied to software-intensive DRE systems.

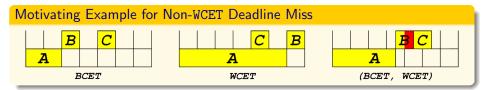



Image: A match a ma

Final Defense 15 / 40

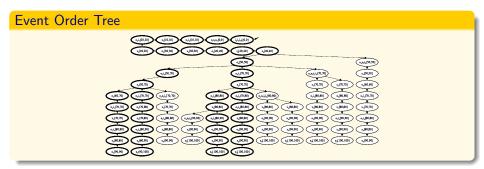
Performance Estimation by DES

- DSM specified using ALDERIS.
- ALDERIS utilized by DREAM using discrete event semantics.
- Use DREAM for performance estimation or real-time verification.
- Applied to software-intensive DRE systems.



Final Defense 15 / 40

Performance Estimation Problem


Performance and Schedulability Analysis

- In AEDRE systems WCET analysis is not sufficient.
- The product of local WCET times does not necessarily correspond to the global WCET.
- Analysis has to capture execution intervals in continuous time.

Enumerating Execution Traces

- DE semantics, "jump" to event with the smallest timestamp.
- A *run* is the chronological sequence of events occurred.
- 2 execution traces are equivalent, iff they contain the same events in the same order.
- Enumerate equivalent execution traces.

17 / 40

Final Defense

Evaluating the Proposed Method

Random/Directed Simulations

- Proposed method achieves 100% coverage.
- Continuously increases coverage.

Static Analysis Methods

- Captures dynamic effects such as race conditions, congestions on bus.
- More accurate.

Timed Automata Model Checking

- Calculates WCET instead of answering yes/no question.
- CPU-bound; it can return partial results on large models.

Evaluating the Proposed Method

Random/Directed Simulations

- Proposed method achieves 100% coverage.
- Continuously increases coverage.

Static Analysis Methods

- Captures dynamic effects such as race conditions, congestions on bus.
- More accurate.

Timed Automata Model Checking

- Calculates WCET instead of answering yes/no question.
- CPU-bound; it can return partial results on large models.

Evaluating the Proposed Method

Random/Directed Simulations

- Proposed method achieves 100% coverage.
- Continuously increases coverage.

Static Analysis Methods

- Captures dynamic effects such as race conditions, congestions on bus.
- More accurate.

Timed Automata Model Checking

- Calculates WCET instead of answering yes/no question.
- CPU-bound; it can return partial results on large models.

Conservative Approximation of Preemptive Scheduling

- DSM specified using ALDERIS.
- ALDERIS mapped to stopwatch automata decidability issues.
- ALDERIS mapped to timed automata approximation by DREAM.
- Model check timed automata by UPPAAL or Verimag IF.
- Applied to software-intensive DRE systems.

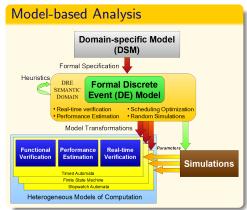
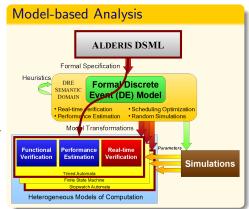
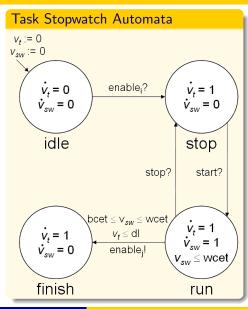
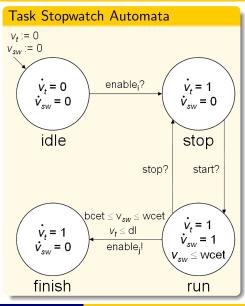



Image: A match a ma

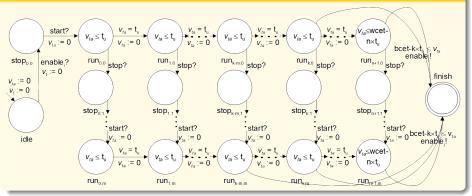
Conservative Approximation of Preemptive Scheduling


- DSM specified using ALDERIS.
- ALDERIS mapped to stopwatch automata decidability issues.
- ALDERIS mapped to timed automata approximation by DREAM.
- Model check timed automata by UPPAAL or Verimag IF.
- Applied to software-intensive DRE systems.


Modeling a Preemptable Task

- Stopwatch can be stopped, resumed and resetted.
- Clock valuation v_t measures time passed since enabling event.
- Clock valuation *v_{sw}* measures time spent executing.
- $0 \le v_{sw} \le v_t, \ 0 \le v_{sw} \le$ wcet.
- en_i start (stop start)* en_j
- $\sum_{i=1}^{\frac{e}{2}} \tau_{2i} \tau_{2i-1} \leq dl wcet.$

Modeling a Preemptable Task


- Stopwatch can be stopped, resumed and resetted.
- Clock valuation v_t measures time passed since enabling event.
- Clock valuation *v_{sw}* measures time spent executing.
- $0 \le v_{sw} \le v_t, \ 0 \le v_{sw} \le$ wcet.
- en_i start (stop start)* en_j
- $\sum_{i=1}^{\frac{e}{2}} \tau_{2i} \tau_{2i-1} \leq dl wcet.$

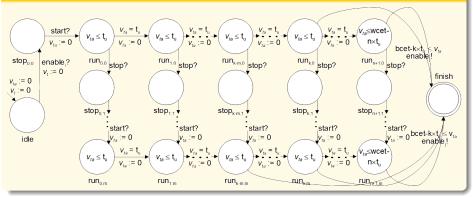
Task Timed Automata

Approximating TSA by TTA

• Reachability analysis undecidable on stopwatch automata in general.

Approximate stopwatch automata by timed automata.

• If TTA schedulable \rightarrow TSA schedulable.



Final Defense 21 / 40

Task Timed Automata

Approximating TSA by TTA

- Reachability analysis undecidable on stopwatch automata in general.
- Approximate stopwatch automata by timed automata.
- If TTA schedulable \rightarrow TSA schedulable.

- $S_{L(S)} = enable_i \text{ start } (stop \text{ start})^* enable_j$.
- $S_{L(T)} = \text{enable}_i \text{ start (stop start)}^{0...m} \text{ enable}_j$.
- TSA: $\sum_{i=1}^{\frac{5}{2}} \tau_{2i} \tau_{2i-1} \leq dl$ -wcet.
- TTA: $\sum_{i=1}^{\frac{5}{2}} \tau_{2i} \tau_{2i-1} + t_u \leq dl wcet.$
- $L(T) \subseteq L(S)$ iff $L(T) \cap \overline{L(S)} = \emptyset$.
- $t_{stop} + \sum_{i=1}^{\frac{1}{2}} t_u \leq dl wcet \cap t_{stop} > dl wcet.$
- Since $t_u \in \mathbb{R}_{\geq 0}$, therefore $0 \leq \sum_{i=1}^{\frac{\pi}{2}} t_u$.
- Contradiction.
- If TTA schedulable \rightarrow TSA schedulable.

· · · · · · · · ·

•
$$S_{L(T)} = \text{enable}_i \text{ start (stop start)}^{0...m} \text{ enable}_j$$
.

• TSA: $\sum_{i=1}^{\frac{e}{2}} \tau_{2i} - \tau_{2i-1} \leq dl-wcet.$

• TTA:
$$\sum_{i=1}^{\frac{5}{2}} \tau_{2i} - \tau_{2i-1} + t_u \leq dl-wcet.$$

- $L(T) \subseteq L(S)$ iff $L(T) \cap \overline{L(S)} = \emptyset$.
- $t_{stop} + \sum_{i=1}^{\frac{5}{2}} t_u \leq dl wcet \cap t_{stop} > dl wcet.$
- Since $t_u \in \mathbb{R}_{\geq 0}$, therefore $0 \leq \sum_{i=1}^{\frac{1}{2}} t_u$.
- Contradiction.
- If TTA schedulable \rightarrow TSA schedulable.

Image: A test in te

•
$$S_{L(T)} = \text{enable}_i \text{ start (stop start)}^{0...m} \text{ enable}_j$$
.

• TSA:
$$\sum_{i=1}^{\frac{e}{2}} \tau_{2i} - \tau_{2i-1} \leq dl-wcet.$$

• TTA:
$$\sum_{i=1}^{\frac{5}{2}} \tau_{2i} - \tau_{2i-1} + t_u \leq dl$$
-wcet.

•
$$L(T) \subseteq L(S)$$
 iff $L(T) \cap \overline{L(S)} = \emptyset$.

•
$$t_{stop} + \sum_{i=1}^{\frac{1}{2}} t_u \leq dl - wcet \cap t_{stop} > dl - wcet.$$

- Since $t_u \in \mathbb{R}_{\geq 0}$, therefore $0 \leq \sum_{i=1}^{\frac{e}{2}} t_u$.
- Contradiction.
- If TTA schedulable \rightarrow TSA schedulable.

•
$$S_{L(S)} = enable_i \text{ start } (stop \text{ start})^* enable_j.$$

•
$$S_{L(T)} = \text{enable}_i \text{ start (stop start)}^{0...m} \text{ enable}_j$$
.

• TSA:
$$\sum_{i=1}^{\frac{e}{2}} \tau_{2i} - \tau_{2i-1} \leq dl-wcet.$$

• TTA:
$$\sum_{i=1}^{\frac{5}{2}} \tau_{2i} - \tau_{2i-1} + t_u \leq dl$$
-wcet.

•
$$L(T) \subseteq L(S)$$
 iff $L(T) \cap \overline{L(S)} = \emptyset$.

•
$$t_{stop} + \sum_{i=1}^{\frac{1}{2}} t_u \leq \mathsf{dl} - \mathsf{wcet} \cap t_{stop} > \mathsf{dl} - \mathsf{wcet}.$$

• Since
$$t_u \in \mathbb{R}_{\geq 0}$$
, therefore $0 \leq \sum_{i=1}^{\frac{e}{2}} t_u$.

• Contradiction.

Image: A match a ma

•
$$S_{L(S)} = enable_i$$
 start (stop start)* enable_j.

•
$$S_{L(T)} = \text{enable}_i \text{ start (stop start)}^{0...m} \text{ enable}_j$$
.

• TSA:
$$\sum_{i=1}^{\frac{e}{2}} \tau_{2i} - \tau_{2i-1} \leq dl-wcet.$$

• TTA:
$$\sum_{i=1}^{\frac{5}{2}} \tau_{2i} - \tau_{2i-1} + t_u \leq dl$$
-wcet.

•
$$L(T) \subseteq L(S)$$
 iff $L(T) \cap \overline{L(S)} = \emptyset$.

•
$$t_{stop} + \sum_{i=1}^{\frac{5}{2}} t_u \leq \mathsf{dl} - \mathsf{wcet} \cap t_{stop} > \mathsf{dl} - \mathsf{wcet}.$$

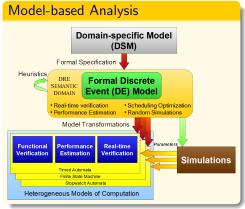

• Since
$$t_u \in \mathbb{R}_{\geq 0}$$
, therefore $0 \leq \sum_{i=1}^{\frac{e}{2}} t_u$.

Image: A match a ma

Combining Simulations and Model Checking for MPSoCs

- DSM specified using ALDERIS.
- ALDERIS mapped to finite state machine model – manually using templates.
- *SystemC* implementation of the model used to obtain execution parameters.
- Annotate formal models by simulation data.
- Perform model checking on the FSM model by NuSMV.
- Applied to JPEG 2000 multimedia design.

< ロ > < 同 > < 三 > < 三

Final Defense 23 / 40

Combining Simulations and Model Checking for MPSoCs

- DSM specified using ALDERIS.
- ALDERIS mapped to finite state machine model – manually using templates.
- *SystemC* implementation of the model used to obtain execution parameters.
- Annotate formal models by simulation data.
- Perform model checking on the FSM model by NuSMV.
- Applied to JPEG 2000 multimedia design.

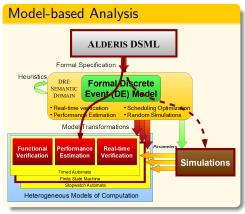


Image: Image:

Challenges in MPSoC Design

In Functional Verification

- Deadlock-freedom and livelock-freedom not guaranteed.
- Access to the bus is managed by an arbiter (or several arbiters).
- Communication subsystem has a major impact.
- Cycle-accurate Finite State Machine (FSM) model.

Performance Estimation

- MPSoCs can be viewed as DRE systems.
- Point arbitration in fully connected bus matrices modeled as non-preemptive scheduling.
- Transaction-level Discrete Event Simulations (DES).
- 3 Real-time Verification
 - Need to ensure real-time schedulability.
 - End-to-end real-time constraints.
 - Transaction-level timed automata model checking

Challenges in MPSoC Design

In Functional Verification

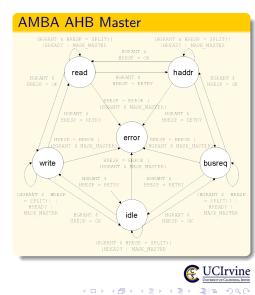
- Deadlock-freedom and livelock-freedom not guaranteed.
- Access to the bus is managed by an arbiter (or several arbiters).
- Communication subsystem has a major impact.
- Cycle-accurate Finite State Machine (FSM) model.
- Performance Estimation
 - MPSoCs can be viewed as DRE systems.
 - Point arbitration in fully connected bus matrices modeled as non-preemptive scheduling.
 - Transaction-level Discrete Event Simulations (DES).

8 Real-time Verification

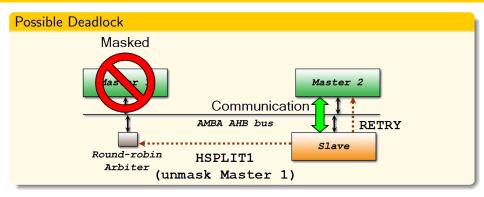
- Need to ensure real-time schedulability.
- End-to-end real-time constraints.
- Transaction-level timed automata model checking

Challenges in MPSoC Design

In Functional Verification


- Deadlock-freedom and livelock-freedom not guaranteed.
- Access to the bus is managed by an arbiter (or several arbiters).
- Communication subsystem has a major impact.
- Cycle-accurate Finite State Machine (FSM) model.
- Performance Estimation
 - MPSoCs can be viewed as DRE systems.
 - Point arbitration in fully connected bus matrices modeled as non-preemptive scheduling.
 - Transaction-level Discrete Event Simulations (DES).
- 8 Real-time Verification
 - Need to ensure real-time schedulability.
 - End-to-end real-time constraints.
 - Transaction-level timed automata model checking.

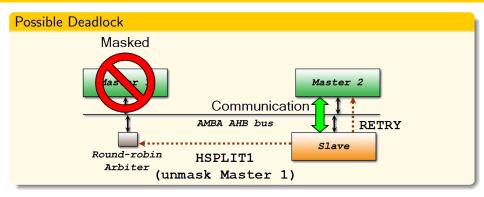
Final Defense 24 / 40


Modeling AMBA AHB

- Cycle-accurate *Finite State Machine (FSM)* model.
- Modeled generic master (6 states), slave (4 slaves), round-robin arbiter.
- Use FSM models for functional verification & performance estimation.
- Uncovered previously undocumented ambiguity.

Combining Simulations and Model Checking for MPSoCs Functional Verification

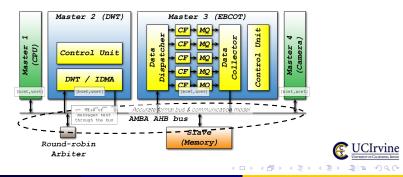
Ambiguity in the AMBA AHB Protocol



- Slave has previously split Master_1.
- Slave in transaction with Master_2.
- Issue HSPLIT₁ while setting RETRY response.
- Should arbiter hold its state, or unmask Master_1?

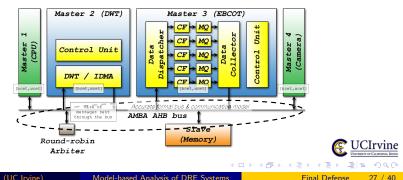
Combining Simulations and Model Checking for MPSoCs Functional Verification

Ambiguity in the AMBA AHB Protocol



- Slave has previously split Master_1.
- Slave in transaction with Master_2.
- Issue HSPLIT₁ while setting RETRY response.
- Should arbiter hold its state, or unmask Master_1?

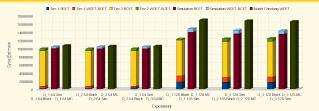
Combining Simulations and Model Checking for MPSoC Evaluation


- Obtain execution intervals for components by *SystemC* simulations.
- Calculate size of messages on bus.
- Annotate formal models with parameters from simulations
- Model check to find actual end-to-end WCET times.

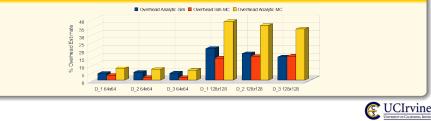
Gabor Madl (UC Irvine)

Combining Simulations and Model Checking for MPSoC Evaluation

- Obtain execution intervals for components by *SystemC* simulations.
- Calculate size of messages on bus.
- Annotate formal models with parameters from simulations
- Model check to find actual end-to-end WCET times.


Gabor Madl (UC Irvine)

Model-based Analysis of DRE Systems


Evaluating the Performance of Design Alternatives

Comparing Simulations and Model Checking

Performance Estimates

Communication Overhead Estimates

Cross-abstraction Real-time Analysis of MPSoCs

- *SystemC* implementation of the model used to obtain execution parameters.
- Perform functional verification on the FSM model by NuSMV.
- Use DREAM for performance estimation.
- Real-time verification of timed automata by UPPAAL or Verimag IF.
- Applied to networking router design.

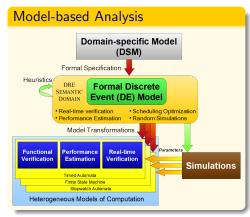
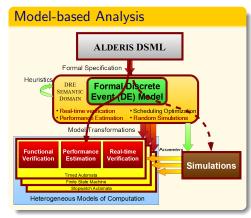
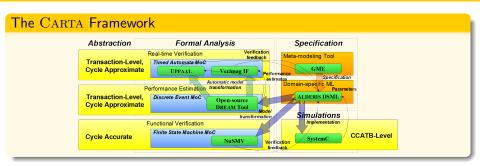
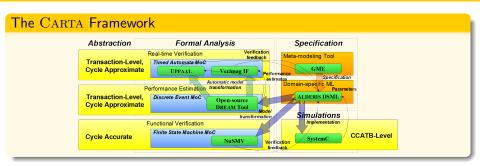



Image: A match a ma


Cross-abstraction Real-time Analysis of MPSoCs

- SystemC implementation of the model used to obtain execution parameters.
- Perform functional verification on the FSM model by NuSMV.
- Use DREAM for performance estimation.
- Real-time verification of timed automata by UPPAAL or Verimag IF.
- Applied to networking router design.

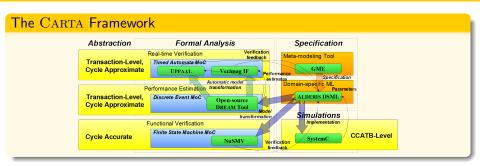
Analysis of Bus Matrix MPSoC Designs


• Transaction-level simulations improve the analysis performance for MPSoCs.

- Could we trade off analysis performance and accuracy for model checking?
- Key contribution; show how analysis methods for DRE systems can be applied to MPSoCs.

< □ > < ---->

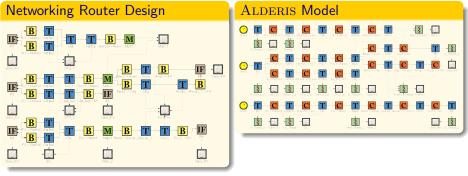
- ∢ ∃ ▶


Analysis of Bus Matrix MPSoC Designs

- Transaction-level simulations improve the analysis performance for MPSoCs.
- Could we trade off analysis performance and accuracy for model checking?
- Key contribution; show how analysis methods for DRE systems can be applied to MPSoCs.

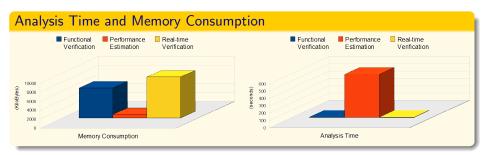
Image: Image:

Analysis of Bus Matrix MPSoC Designs

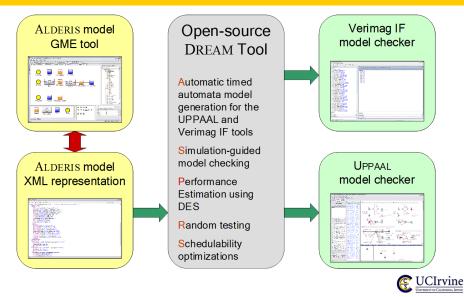


- Transaction-level simulations improve the analysis performance for MPSoCs.
- Could we trade off analysis performance and accuracy for model checking?
- Key contribution; show how analysis methods for DRE systems can be applied to MPSoCs.

< <>></>


Transaction-level Modeling of Bus Matrix Interconnects

- Formal analysis is simplified in fully connected bus matrices.
- Point arbitration can be expressed as non-preemptive scheduling.



Applying Cross-abstraction Analysis to Networking Router Design

- Functional verification at cycle-accurate abstraction, by FSM.
- Performance estimation at transaction-level, by DES.
- Real-time verification at transaction-level, by timed automata.

The Open-source DREAM Framework

Gabor Madl (UC Irvine)

Model-based Analysis of DRE Systems

Final Defense 33 / 40

Concluding Remarks

- Formal Modeling; the ALDERIS Domain-specific Modeling Language (DSML).
- Real-time Verification by Timed Automata (non-preemptive) [3, 7, 8, 9].
- Performance Estimation by Discrete Event Simulations (DES) [5].
- Conservative Approximation of Preemptive Scheduling by Timed Automata [4].
- Ombining Simulations and Model Checking for MPSoCs [1, 6].
- Cross-abstraction Analysis of MPSoCs [2].
- **O** The Open-source DREAM Framework [10].

Future Work

- Hierarchical (compositional) approach to verification.
- Energy (and power) verification.
- Multi-core implementation of the DES-based real-time analysis method.
- Integration with real-time calculus.
- Real-time kernel based on the open-source Dream tool.
- Run-time analysis.
- Integration with Model Predictive Control/Supervisory Control.

Related Publications I

G. Madl, S. Pasricha, Q. Zhu, L. A. D. Bathen, and N. Dutt. Combining Transaction-level Simulations and Model Checking for MPSoC Verification and Performance Evaluation. *ACM Transactions on Design Automation of Electronic Systems* (submitted for publication), 2009.

G. Madl, S. Pasricha, N. Dutt, and S. Abdelwahed. Cross-abstraction Functional Verification and Performance Analysis of Chip Multiprocessor Designs.

IEEE Transactions on Industrial Informatics, Special Section on Real-time and (Networked) Embedded Systems (submitted for publication), 2009.

Related Publications II

- G. Madl, S. Abdelwahed, and D. C. Schmidt. Verifying Distributed Real-time Properties of Embedded Systems via Graph Transformations and Model Checking. *Real-Time Systems*, 33:77–100, Jul 2006.
- G. Madl, N. Dutt, and S. Abdelwahed.
 A Conservative Approximation Method for the Verification of Preemptive Scheduling using Timed Automata.
 In *Proceedings of RTAS*, pages 255–264, April 2009.
 - 🔋 G. Madl, N. Dutt, and S. Abdelwahed.

Performance Estimation of Distributed Real-time Embedded Systems by Discrete Event Simulations.

In Proceedings of EMSOFT, October 2007.

Related Publications III

G. Madl, S. Pasricha, Q. Zhu, L. A. D. Bathen, and N. Dutt. Formal Performance Evaluation of AMBA-based System-on-Chip Designs.

In Proceedings of EMSOFT, pages 311-320, October 2006.

G. Madl and S. Abdelwahed.

Model-based Analysis of Distributed Real-time Embedded System Composition.

In Proceedings of EMSOFT, 2005.

G. Madl, S. Abdelwahed, and G. Karsai. Automatic Verification of Component-Based Real-Time CORBA Applications.

In Proceedings of RTSS, pages 231-240, December 2004.

Related Publications IV

G. Madl and N. Dutt.

Domain-specific Modeling of Power Aware Distributed Real-time Embedded Systems.

In Proceedings of the 6th Workshop on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS), 2006.

G. Madl and N. Dutt. Tutorial for the Open-source DREAM Tool. In CECS Technical Report, 2006.

• Open-source DREAM Tool:

http://dre.sourceforge.net

• ALDERIS Modeling Language:

http://alderis.ics.uci.edu

