PROBLEM STATEMENT

Consider a pair of user-generated event series

\[M = (A, B) = \{ (t_i, m(t_i)) : j = 1, \ldots, n \} \]

where \(t_j \in \mathbb{R}^+ \) is the time and \(m(t_j) \in \{A, B\} \) is the type of the \(j^{th} \) event. We want to quantify the likelihood that the pair was generated by the same source.

MEASURES OF ASSOCIATION

Score Functions using Nearest Neighbors

- **Coefficient of Segregation** [3]: function of the ratio of the probability that a reference point (i.e., a randomly selected event in \(A, B \)) and its nearest neighbor have different marks to the same probability for independent marks.

\[S(A, B) = 1 - \frac{PA \cdot PB \cdot \min(1, N_{k}))}{PA \cdot PB \cdot \min(1, N_{k}))} \in [0, 1] \]

- **Minning Index** [4]: mean fraction of points among the \(k \) nearest neighbors whose type is different than that of the reference point

\[M_k(A, B) = \frac{1}{nk} \sum_{j=1}^{n} \sum_{i=1}^{k} \mathbb{1}(m(t_i) \neq m(t_j)) \in [0, 1] \]

Score Functions using Inter-Event Times

Assume that \(n_A < n_B \) and fix series \(B. \) We then measure the time from each event in \(B \) to the closest event in series \(A \) in either direction

\[T_{BA} = \{ t_{BA,j} : j = 1, \ldots, n_B \} \]

where \(t_{BA,j} = \min_{k \in \{1, \ldots, n_A\}} |t_A - t_{Bk}| \)

- Mean inter-event time from \(B \) to \(A \)

\[T_{BA} = \frac{1}{n_A} \sum_{j=1}^{n_B} t_{BA,j} \in (0, \infty) \]

- Median inter-event time from \(B \) to \(A \)

\[\text{med}(T_{BA}) \in (0, \infty) \]

RESAMPLING APPROACH

Given

- Pair of interest: \((A^*, B^*) \)

Score function: \(\Delta \)

Method

- Two competing hypotheses:

 \(H_0: (A^*, B^*) \) came from the same source

 \(H_1: (A^*, B^*) \) came from different sources

- Use sample \(M_i = (A_i, B_i) \) for \(i = 1, \ldots, N \) to estimate the score-based likelihood ratio

\[SLR_\Delta = \frac{g(\Delta(A^*, B^*), H_1)}{g(\Delta(A^*, B^*), H_0)} \]

DIFFERENT INTERPRETATIONS OF THE DENOMINATOR [1]

COMPARISON OF APPROACHES

Given

- Pair of interest: \((A^*, B^*) \)

Score function: \(\Delta \)

Method

- Focus on the denominator of \(SLR_\Delta \)

Coincident match probability: probability that a different-source pair with observed score \(\Delta(A^*, B^*) \) exhibits association by chance

\[CMP_\Delta = Pr(\Delta(A, B) < \Delta(A^*, B^*), H_0) \]

- Use resampling in time to simulate different-source pairs \((A^0, B^0) \) and estimate

\[CMP_\Delta = \frac{1}{n_{sim}} \sum_{i=1}^{n_{sim}} \mathbb{1}(\Delta(A^0, B^0) < \Delta(A^*, B^*)) \]

REFERENCES

QUANTIFYING THE ASSOCIATION BETWEEN DISCRETE EVENT TIME SERIES

CHRIS GALBRAITH\(^\ddagger\), PADHRAI SMYTH\(^\ddagger\) & HAL S. STERN\(^\ddagger\)

\(^\ddagger\)Department of Statistics, \(^\ddagger\)Department of Computer Science

CONCLUSIONS

- Resampling approach shows promise in situations where no reference data is available
- Population-based SLR is preferred, given
 - Better performance for weakly associated pairs
 - Similar performance for strongly associated pairs
- Well-established in forensic investigation

CASE STUDY

- Data from a 2013-2014 study at UCI that placed logging software on 124 students’ computers that recorded all browser activity for one week [2]
- Event series created by dichotomizing browsing events to Facebook versus non-Facebook urls
- Only considered 55 students with at least 50 web browsing events of each type

COMPUTER SERIES

FORUM

CONTACT INFORMATION

Web: www.ics.uci.edu/~galbraic
Email: galbraic@uci.edu