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Efficiently Approximating Polygonal Paths in Three and
Higher Dimensions1

G. Barequet,2 D. Z. Chen,3 O. Daescu,3 M. T. Goodrich,2 and J. Snoeyink4

Abstract. We present efficient algorithms for solving polygonal-path approximation problems in three and
higher dimensions. Given ann-vertex polygonal curveP in Rd, d ≥ 3, we approximateP by another poly-
gonal curveP′ of m ≤ n vertices inRd such that the vertex sequence ofP′ is an ordered subsequence of
the vertices ofP. The goal is either to minimize the sizem of P′ for a given error toleranceε (called the
min-# problem), or to minimize the deviation errorε betweenP and P′ for a given sizem of P′ (called
the min-ε problem). Our techniques enable us to develop efficient near-quadratic-time algorithms in three
dimensions and subcubic-time algorithms in four dimensions for solving the min-# and min-ε problems.
We discuss extensions of our solutions tod-dimensional space, whered > 4, and for theL1 and L∞
metrics.

Key Words. Curve approximation, Parametric searching.

1. Introduction. In this paper we consider the problem of approximating an arbitrary
n-vertex polygonal pathP in three-dimensional space by another polygonal pathP′

whose vertices form an ordered subsequence of the vertices in the original pathP. We
further discuss this problem in thed-dimensional space, whered ≥ 4, and extend our
solutions for theL1 andL∞ metrics.

This problem arises in many applications, such as robotics, image processing, com-
puter graphics, cartography, and data compression. In these applications it is often de-
sirable to approximate a complex graphical or geometric object, which is specified by
a polygonal path, by a simpler object that captures the essence of the original object
yet achieves a certain degree of data compression [5], [27], [28]. For example, we have
been asked to compress three-dimensional path data for optic nerves acquired in medical
studies and of river networks in geographic information systems analysis of spawning
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habitat [24]. Path simplification is also important for devices with low speed, from pen
plotters to the World-Wide Web.

In general, the goal of the path-approximation problem is to replace a (very) high-
resolution pathP with an approximate pathP′ that achieves significant time and space
improvements while suffering only a small approximation error. Two factors come to play
in such an approximation: the number of vertices in the approximation and the error be-
tween the approximation and the original path. These two factors give rise to two different
versions of the path-approximation problem—the min-ε version and the min-# version.
In the min-ε version one is given a parameterm≤ n and asked to find an approximating
path P′ with at mostm vertices whoseerror, ε, from the original path is minimized.
This version of the problem is motivated by a desire to obtain the best approximation
possible that achieves a certain degree of data compression. In the min-# version of the
path-approximation problem one is instead given a parameterε > 0 and asked to find
the smallest-vertex pathP′ that is withinerror ε of the original path. This version of the
problem is motivated by a desire to obtain the smallest-complexity path that maintains a
certain level of accuracy. In this paper we study both versions of thed-dimensional path-
approximation problem (whered ≥ 3), for the usual metricL2, and also forL1 andL∞.

One issue that immediately arises in the path approximation problem is that one must
formalize the “error” between the original pathP and the approximationP′. We believe
that one of the most natural definitions is thetolerance-zoneerror measure [5], [21],
[22], [26]. Define theε-tolerance zone(for ε > 0) of a line segmentpq to be the region
of space (or “zone”) that is the union of all radius-ε balls centered at points along the
segmentpq (see Figure 1). This definition is, of course, parameterized by the metric
used to define radius-ε balls. We consider the usual Euclidean metric,L2, as well as the
L1 andL∞ distance metrics. We may then formalize the path-approximation problem
as follows:

POLYGONAL PATH APPROXIMATION.
Given a polygonal pathP = (p1, p2, . . . , pn), find a pathP′ = (pi1, pi2, . . . , pim),
such that:

• i j ∈ {1,2, . . . ,n}, for j = 1,2, . . . ,m;
• i j < i j+1, for j = 1,2, . . . ,m− 1; and
• the subpath(pi j , pi j+1, . . . , pi j+1), for j = 1,2, . . . ,m− 1, is completely contained

in theε-tolerance zone for the segmentpi j pi j+1.

If the subpathPi j ,i j+1 = (pi j , pi j+1, . . . , pi j+1) is completely contained in theε-
tolerance zone for the segmentpi j pi j+1, we call pi j pi j+1 anapproximating line segment
for Pi j ,i j+1.

pk""

pi pj

Fig. 1.Theε-tolerance zone of a single segmentpi pj .
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In the min-ε version of the path-approximation problem we are givenm < n and
wish to minimizeε; in the min-# version we are givenε > 0 and wish to minimizem.

We restrict our attention to the version of this problem that requires thatpi1 = p1 and
pim = pn. In the general version we only require thati1 ≤ im, and that the subpathsP1,i1−1

andPim+1,n are completely contained in theε-balls centered atPi1 andPim, respectively.
We explain later in the Introduction how to reduce the general problem to its restricted
version.

1.1. Related Previous Work. Imai and Iri [21], [22] and Melkman and O’Rourke [26]
study the two-dimensional min-# and min-ε polygonal-path approximation problems.
Using the tolerance-zone measure of error, as defined above, they achieve algorithms
whose running times areO(n2 logn) and O(n2 log2 n), respectively, and useO(n2)

space, for the two problems. Chan and Chin [6] reduce the time complexity of both
results by a logarithmic factor. Chen and Daescu [9] further show that the algorithms of
[6] can use onlyO(n) space without increasing their running times.

Varadarajan [31] studies the min-# and min-ε problems for two-dimensional poly-
gonal paths that are monotone, i.e., any line parallel to they axis intersects such a path
in a point. Given a monotone approximation of a monotone path, Varadarajan mea-
sures the error as the maximum distance between the intersection points with some
line parallel to they axis. He givesO(n4/3+δ) time and space algorithms for both
problems, whereδ > 0 is an arbitrarily small constant. However, those algorithms
cannot be extended to the three-dimensional version of the problem or to the tolerance-
zone error criterion in two dimensions. The recursive simplification heuristic of
Douglas and Peucker [10], which is popular in GIS, does extend to curves in
three dimensions inO(n2) worst-case time, but solves neither the min-# nor the
min-ε problems.

There has been other less-related, but still significant, work done on other metrics for
comparing two-dimensional polygonal paths [22] that do not necessarily use the same
set of vertices. Arkin et al. [3], Alt and Godau [2], and Rote [29] describe several metrics
for comparing polygonal curves. Guibas et al. [19] study different error measures for the
min-# problem, with an eye toward those that could be implemented inO(n logn) time
by greedy algorithms. Fleischer et al. [15] approximate polygonal shapes by inner and
outer polygons and show their applications to the problems of polygon containment and
of planar motion planning.

Previous work on the three-dimensional path-approximation problem, that uses the
tolerance-zone measure of error, has given, to the best of our knowledge, algorithms
with supercubic time bounds. Ihm and Naylor [20] give anO(n3 logm) algorithm for
the min-ε problem. Eu and Toussaint [14] restrict the polygonal chains to be monotonic
with respect to one of the three coordinate axes, and define the approximation in terms of
aninfinite-beammeasure of error. In this measure of error one requires that each subpath
(pi j , pi j+1, . . . , pi j+1) be completely contained in theε-tolerance zone of theinfinite
line containing the segmentpi j pi j+1, called the infinite beam. When infinite beams are
defined in terms of theL1 or L∞metrics, Eu and Toussaint show how to achieve running
times ofO(n2) andO(n3) for the min-# and min-ε problems, respectively, for monotone
three-dimensional polygonal paths. Under the Euclidean (L2) metric, they consider the
three-dimensional version of the problem in [31] and give algorithms that run inO(n3)
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(a) (b) (c)

Fig. 2. Approximations using the tolerance-zone and the infinite-beams measures of error. (a) Original path,
(b) tolerance zone, and (c) infinite beams.

and O(n3 logn) time, respectively, for the min-# and min-ε problems on monotone
three-dimensional polygonal paths.

We believe that the tolerance-zone measure of error for segments captures better the
intuitive concept of the shape of ad-dimensional polygonal path. We illustrate in Figure 2
the difference between approximating a two-dimensional path with tolerance zones and
with infinite beams.

1.2. Our Results. In this paper we give the first efficient algorithms for approximating
a polygonal path ind dimensions, whered ≥ 3, for general (nonmonotonic) paths, using
the tolerance-zone measure of error for segments. We summarize the running times of
our methods in Table 1. The important thing to note is that all of our bounds are subcubic,
and most are nearly quadratic. Fairly straightforward bounds ofO(n3) for min-# and
O(n3 logn) for min-ε follow by adapting previous two-dimensional results [6], [21],
[22], [26]. Even so, our approach still follows the general framework of these earlier
algorithms. To solve the min-# problem, we first build a graphG on the vertices of
the input pathP, where each edge represents a valid “shortcut,” and we then perform

Table 1.Summary of our min-# and min-ε results.

Three dimensions d ≥ 4 Dimensions

Metric Min-# Min-ε Min-# Min-ε

L2 O(n2 logn) O(n2 log3 n) O(n3−2/(bd/2c+1) polylogn) O(n7/3 polylogn)∗
L1 andL∞ O(n2) O(n2 logn) O(n2) O(n2 logn)

∗For d = 4 only.
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a shortest-path computation inG. To solve the min-ε problem we perform a “binary-
search-like” computation using the min-# algorithm as a “probe.”

Our algorithms differ from previous approaches in some important ways, however.
One of the fundamental differences is that we develop ad-dimensional generalization
of the two-dimensional approach of Chan and Chin [6] for constructing the “shortcut”
graphG. Rather than constructing this graph directly, we instead construct it as the
intersection of two other graphs,

−→
G and

←−
G , which respectively define tolerance zones

in terms of “semi-infinite” beams (pointing in opposite directions). The difficult part of
this computation is that, fixing an index 1≤ i < n, we must determine, for each index
j with i < j ≤ n, if the ray−−→pi pj originating atpi and passing throughpj intersects
each radius-ε ball centered at a vertexpk for i < k < j . We reduce this problem to the
following data structuring problem:

OFF-LINE BALL -INCLUSION TESTING.
Maintain a collection of different-radius balls subject to a given sequence of the fol-
lowing operations:

• insert (B): Add ball B to the collection.
• inside (p): Determine if pointp is inside the common intersection of the balls.

For d = 3, we refer to the problem above as the off-line disk-inclusion testing problem
(the balls are disks on a three-dimensional sphere) and provide a data structure for solving
this problem in amortizedO(logn) time for inserts and queries, even though each disk
insertion can cause2(n) structural changes to the common intersection. We use this
data structure to derive anO(n2 logn)-time algorithm for the min-# path approximation
problem. To turn this into an efficient algorithm for the min-ε problem we give an
application of the parametric-search paradigm that is based upon a nontrivial parallel
version of our off-line inclusion testing data structure.

When theε-tolerance zones are defined using theL1 or L∞ metrics, we can do better
than this. We present anO(n2)-time algorithm for the min-# problem and anO(n2 logn)-
time algorithm for the min-ε problem. For the latter algorithm we avoid using parametric
search.

Ford > 3, we show how to achieve a subcubic time for the min-# problem under the
L2 metric. We also giveO(n2)- andO(n2 logn)-time algorithms (for a fixedd > 3) for
the min-# and min-ε problems, respectively, under theL1 andL∞metrics. The constants
hidden in the big-Oh notation depend ond and on the used metric: they areO(d2d) for
L1 andO(d2) for L∞.

The general version of the problem can be reduced to the version solved in this paper
(wherei1 = 1 andim = n) by adding toG two verticesp0 and pn+1, and edgesp0 pi

(resp.,pi pn+1), for 1 ≤ i ≤ n, if all the verticespj , for 1 ≤ j < i (resp.,i < j ≤ n)
are contained in anε-ball centered atpi . This additional processing takesO(n2) time,
and we then solve the restricted problem forp0 and pn+1.

The rest of the paper is organized as follows. In Section 2 we discuss some useful
structures for solving the min-# problem in three dimensions. In Section 3 we solve the
off-line disk-inclusion problem, which is a central ingredient of our algorithms. Then in
Section 4 we present an algorithm for solving the min-ε problem in three dimensions.
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In Section 5 we generalize our algorithms for higher dimensions. Finally, in Section 6
we generalize our algorithms for theL1 andL∞ metrics. We terminate in Section 7 with
some concluding remarks.

2. The Min-# Problem in Three Dimensions. In this section we present the main
ideas behind ourO(n2 logn)-time algorithm for solving the three-dimensional min-#
problem. The important part of this computation involves a reduction to the off-line
ball-inclusion testing problem, which we solve in Section 3.

Suppose then that we are given a three-dimensional polygonal curveP=(p1, p2, . . . ,

pn), and an error valueε > 0, and we wish to find the smallestm≤ n such that there is a
subpathP′ = (pi1, pi2, . . . , pim) that satisfies theε-tolerance-zone criterion (withi1 = 1
and im = n). As outlined in the Introduction, we solve this problem by the following
general approach:

1. Construct a graphG = (V, E), whereV is the vertex set ofP and E consists of
directed edges(pi , pj ), 1 ≤ i < j ≤ n, such thatpi pj is an approximating line
segment of the subchain(pi , pi+1, . . . , pj ) of P.

2. Find a shortest path fromp1 to pn in G (i.e., a path with the fewest number of edges).
This path gives us the sought approximating curveP′.

Since the second step is easily solved by a breadth-first search computation, we concen-
trate on an efficient technique for constructingG from P.

As mentioned above, we constructG as the intersection of two graphs
−→
G and

←−
G . Say

that edge(pi , pj ) is in the graph
−→
G if the ray−−→pi pj originating atpi and passing through

pj intersects each radius-ε ball B(pk, ε) centered at a vertexpk for i < k < j . Likewise,

say that edge(pi , pj ) is in the graph
←−
G if the ray←−−pi pj originating atpj and passing

throughpi intersects eachB(pk, ε), for i < k < j . It is an easy observation that an edge
(pi , pj ) is in G if and only if it is in both

−→
G and

←−
G . Since the constructions of these

two graphs are symmetric computations, we concentrate further upon the construction
of the graph

−→
G .

In this section we show how to reduce the problem of determining the edges in
−→
G

to the off-line disk-inclusion problem. We fix an indexi , with 1 ≤ i < n, and focus
on computing all the edges of the form(pi , pj ) in

−→
G , for i < j ≤ n. Say that the ray−−→pi pj properly approximatesthe polygonal chain(pi , . . . , pj ) if it intersects every ball

B(pk, ε) for i < k < j . Now imagine a “large” sphereSi centered atpi , and project
from pi all the ballsB(pk, ε) (i < k < j ) onto this sphere. Each ballB(pk, ε) is then
projected to a diskDk on the sphereSi (see Figure 3).

It is trivial to show that:

LEMMA 1. The ray−−→pi pj is a proper approximation if and only if:

1. The intersection of the set of disksD(i, j ) = {Di+1, . . . , Dj−1} on Si is nonempty.
2. The projection of pj from pi onto Si is found within the intersection of the disks in
D(i, j ).
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Fig. 3.The projection of the radius-ε ball B(pk, ε) centered atpk onto the sphereSi . (Si is not shown.)

This lemma gives us the ability to reduce the construction of all edges of the form
(pi , pj ) in

−→
G , for our fixedpi , to the off-line disk-inclusion problem. Specifically, we

define the operations:

• insert (Dj ): Inserts diskDj to a data structure, whereDj is the projection ofB(pj , ε)

onto the sphereSi using pi as the center of projection.
• inside (p′j ): Returns “true” or “false,” depending on whether pointp′j , the projection

of pj ontoSi usingpi as the center of projection, is contained by all the disks currently
in the data structure.

We then construct a sequence6i of insert andinside operations, as follows:

1: Initialize6i to insert a disk containing the entire sphereSi .
2: for j = i + 1 ton
3: Append the operationinside (p′j ) to6i .
4: Append the operationinsert (Dj ) to6i .
5: end for

Again, it is straightforward to show that:

LEMMA 2. The edge(pi , pj ) is in
−→
G if and only if the response to the operation

inside (p′j ) in 6i is “true.”

Thus, we have reduced the problem of constructing
−→
G to the problem of solving

n − 1 independent instances of the off-line disk-inclusion problem. We outline in the
next section how we can solve this problem efficiently.

3. The Off-Line Disk-Inclusion Problem. Suppose we are given a sequence6 of
n insert (Di ) and inside (pi ) operations defining an instance of the off-line disk-
inclusion problem. In this section we show how to determine the answers to all the
inside (pi ) queries inO(n logn) total time. Before we provide our solution we remark
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that Sharir [30] and Eppstein [12] give data structures for maintaining the on-line in-
tersection of a collection of equal-radius disks. This data structure cannot be applied to
our disk-inclusion problem, however, as the disks in our problem do not in general have
equal radii.

We describe our solution to the off-line disk-inclusion problem. We begin by building
a complete binary treeT such that each leaf ofT is associated with a different disk given
in the sequence6. We order the leaves ofT from left to right in the order they are given
in the sequence6. For each internal nodev in T , let I (v) denote a representation of the
common intersection of the disks stored at leaf-descendants ofv. We computeI (v) for
all verticesv in T in a divide-and-conquer manner. In each node we maintain the lower
and upper envelopes of the intersections of the respective disks. Over all, the total time
required for constructingI (v) for all verticesv is O(n logn). It is important to observe
that each leaf ofT is associated with a different index in6. Thus, if aninside query
appears in positioni in 6, we can form a search pathπi from the root ofT to the leaf
corresponding to the first insertion after positioni . Say that a nodew of T is on the
left fringe of πi if w is not onπi but is a left child of a node onπi . Noting that the
inside query is a decomposable search problem, we can answer aninside (p) query
for positioni by determining ifp is insideI (w) for eachw that is a left fringe node ofπi

(answering “true” if and only if it is inside them all). For eachw, the task is therefore to
determine whetherp is above (resp., below) the lower (resp., upper) envelope ofI (v).
This amounts to locating the envelope arcs below and abovep and then deciding whether
p is indeed contained inI (v). By using the fractional-cascading technique of Chazelle
and Guibas [7], [8] we are able to answer eachinside query in6 in O(logn) time.
This gives us the following:

THEOREM3. Given a sequence6 of n diskinsert updates and pointinside queries,
one can answer all theinside queries in6 in O(n logn) time.

Combining this with the discussion from the previous section immediately gives us
the following:

THEOREM4. Given an n-vertex polygonal path P in three-dimensional space, and
a parameterε ≥ 0, one can find the fewest-vertex approximating path P′ to P in
O(n2 logn) time under theε-tolerance-zone criterion.

4. The Min-ε Problem in Three Dimensions. We now turn to the min-ε problem.
Suppose then that we are given a three-dimensional polygonal curveP= (p1, p2, . . . ,

pn), and an integer parameterm < n, and we wish to find the smallestε ≥ 0 such
that there is a subpathP′ = (pi1, pi2, . . . , pim) that satisfies theε-tolerance-zone cri-
terion. For solving the min-ε problem we parallelize the min-# algorithm and invoke
it as a subroutine in a parametric search algorithm, where the sought solutionε∗ is
the minimumε for which there exists an approximating curve of no more thanm ver-
tices.

In fact, we do not really have to parallelize the entire min-# algorithm described above.
We need only parallelize the portions of the algorithm that depend upon the parameter
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ε. In the case of our min-# algorithm, the only place whereε plays a role is in the sizes
of the disks that are used in the off-line disk-inclusion algorithm. Thus, the only part of
the min-# algorithm that we need to parallelize is the off-line disk-inclusion algorithm
itself.

The following problem is a key to our algorithm: In the plane, givenn different-radius
disksd1,d2, . . . ,dn andn pointsa1,a2, . . . ,an, determine for everyj = 1,2, . . . ,n,
whetheraj ∈ 5j =

⋂ j
i=1 di . We now give anO(logn)-time,O(n)-processor algorithm

for solving this problem in the parallel comparison model.
Our algorithm is based on Goodrich’s paradigm [16] for computing the upper envelope

of n surfaces in the so-calledk-intersecting class. We first build ann-leaf complete binary
treeT . Thei th leaf ofT storesdi andai . Every internal nodev of T is associated with
(1) the intersectionI (v) of the disks stored at the leaves of the subtreeTv rooted atv
(of course,I (v) needs to be computed); and (2) the point setA(v) consisting of all the
pointsai stored at the leaves ofTv. Observe that, for everyj , the question of whether
aj ∈ 5j =

⋂ j
i=1 di can be answered by checking whetheraj ∈ I (v) for O(logn) nodes

v of the treeT .
One could use a naive parallel algorithm for computing theI (v)’s and checking

whetheraj ∈ I (v): Go up the treeT level by level, starting from the leaves; for every
nodev at each level, first computeI (v) by merging the sorted sequences of the boundary
vertices ofI (x) and I (y), wherex andy are the left and right children ofv, and then
check whether the points ofA(y) belong toI (x). This checking can also be done by
merging a sequence ofA(y) (sorted lexicographically) with the boundary vertices of
I (x). At the root ofT , we have the answers for all questions of whetheraj ∈ 5j . This
naive algorithm can be easily implemented inO(logn log logn) time andO(n/log logn)
processors in the CREW PRAM model.

To obtain a faster algorithm in the parallel comparison model, we pipe-line the merge
operations in computingI (v) from I (x) and I (y) and in checking whetheraj ∈ I (v),
as in Goodrich’s paradigm. A logarithmic number of stages are used for this pipe-lined
procedure. EveryI (v) is maintained as a linked list. At the end of each staget , a list
It (v) is stored atv. We sayv is full whenIt (v) = I (v). The merge at the children ofv is
pipe-lined tov by maintaining a list which is anapproximately uniform subsequence(see
[16]) of It (v). ThenIt+1(v) is defined asIt (x)∪ It (y). The information for the points in
A(v) can be maintained and pipe-lined in a similar fashion as forI (v). These structures
at every nodev can be maintained inO(1) time per stage. By following the techniques
of [16] it easily follows that the problem of checking whetheraj ∈ 5j for every j is
solvable inO(logn) time usingn processors in the parallel comparison model.

We then use this parallel algorithm to drive a parametric-search algorithm [25]. We
simulate each step of this parallel algorithm sequentially, noting that some of the com-
putations in this step depend upon whether the optimal valueε∗ falls in specific intervals
[ε1, ε2]. We find the medianεi in linear time and use the min-# algorithm as a subroutine,
running inO(n2 logn) time, to determine ifε∗ is above or below this median. The answer
to this question resolves half of the comparisons for this parallel step. We can therefore
repeat this process recursively and inO(logn) calls to the min-# subroutine we will have
resolved all the comparisons for this parallel step. We then repeat this process for the
next parallel step. Since our parallel algorithm takes timeO(logn), this implies that the
total running time for our min-ε algorithm isO(n2 log3 n). Thus, we have the following:
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THEOREM5. Given an n-vertex polygonal path P in three-dimensional space, and an
integer parameter m< n, one can find the best m-vertex approximating path P′ to P in
O(n2 log3 n) time under theε-tolerance-zone criterion.

The above discussion assumes that the underlying metric for defining radius-ε balls
is theL2 metric. In Section 6 we explore improvements and simplifications that can be
achieved if we use theL1 or L∞ metrics for this purpose.

5. The Min-# and Min-ε Problems in d ≥ 4 Dimensions. As in three dimensions,
the key to solving the min-# problem ind dimensions is to reduce it to the off-line
ball-inclusion problem in a lower-dimensional space and apply decomposability to the
ball-inclusion problem. We describe below the ideas of this technique.

In order to approximate ad-dimensional curve, we solven off-line ball-inclusion
problems, each performingO(n) inclusion tests of points in(d − 1)-balls. By a stan-
dard lifting map, testing if a point is in a set of(d − 1)-balls is equivalent to asking
whether a point ind dimensions is below the lower envelope of a collection ofd-
dimensional hyperplanes: The query point is lifted to a paraboloid, and the balls are
mapped to hyperplanes; the intersections of thed-dimensional hyperplanes with the
paraboloid, projected intod − 1 dimensions, are the original balls. (See [4] for more
details.)

Thus, to solve one instance of off-line ball inclusion, we build a static data structure
for answering ray-shooting queries (see [13] and [23]), using a parameters to control a
tradeoff between query time and space/preprocessing time. In particular, we build a ray-
shooting data structure inO(spolylogn) space and preprocessing time, that can answer
each ray-shooting query inO(n logn/s1/bd/2c) time. In the Appendix we give a more
complete discussion of the time/space tradeoff for the off-line ball-inclusion problem.

Now, to solve a min-# problem, we have to buildn data structures and askO(n2)

queries. If we balance the time required for the preprocessing and for performing the
queries, we find out thats = O(n2−2/(bd/2c+1) polylogn) and consequently obtain an
O(n3−2/(bd/2c+1) polylogn)-time algorithm. Ford = 4 or 5, for example, this gives us
an algorithm for the min-# problem (under theL2 metric) that runs inO(n7/3 polylogn)
time. Only ford > 19 does the running time of the algorithm exceedO(n2.8 polylogn).

Since each ray-shooting data structure has subquadratic space, and we only need one
structure at a time, the amount of space required by this algorithm is still dominated by
the maximum size of the graphG, which is2(n2). Thus, ford dimensions we obtain:

THEOREM6. Given an n-vertex polygonal path P in d-dimensional space, and an
integer parameter m< n, one can find the best m-vertex approximating path P′ to P in
O(n3−2/(bd/2c+1) polylogn) time by using O(n2) space.

For the min-ε problem in four dimensions we need only observe (as for the three-
dimensional version of the problem) that we have to parallelize only the steps in the
sequential min-# algorithm that depend onε. For this purpose we use the ray-shooting
data structure of [17] and [18]. With some preprocessing, the construction of this data
structure does not depend on the value ofε. In this data structure the points are sorted
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according to their respective coordinates in parallel. As in the three-dimensional case,
we perform the ray-shooting queries in parallel, which costs us anO(log2 n) factor in
the running time. Over all, we obtain anO(n7/3 polylogn)-time algorithm for the four-
dimensional min-ε problem under theL2 metric. Note that this method does not easily
extend to dimensions higher than four because of the possibly large complexities of the
ray-shooting cells in high dimensions.

6. The Min-# and Min-ε Problems for L1 and L∞ Metrics in d Dimensions. In this
section we present our algorithms for the min-# and min-ε problems under theL1 andL∞
metrics. Decomposability of on-line ball inclusion, and the fact that the unit balls in these
metrics are polytopes of constant complexity for constantd, allow us to give efficient
general solutions ind dimensions. We describe our algorithm for theε-tolerance-zone
measure of error.

Recall that to compute the graph
−→
G we had to determine, for a fixed index 1≤ i < n

and eachi < j ≤ n, whether the ray−−→pi pj intersects each radius-ε ball centered at a
vertex pk for i < k < j . As Figure 3 illustrates, the rays frompi that intersect the
radius-ε ball aroundpk form acone. If the ball at pk containspi , then the cone is the
entire space.

Under L1, L∞, or any metric whose ball is a polytope whose complexity depends
only ond, we can reduce the problem of constructing the graph

−→
G to a constant number

of instances of the one-dimensional version of the ball-inclusion problem, which is
one-dimensional off-line interval-inclusion testing.

LEMMA 7. In d dimensions, the question of whether a ray−−→pi pj intersects each ball
B(pk, ε), for i < k < j , reduces to O(d2) instances of off-line interval-inclusion testing
for the L∞ metric or O(d2d) instances for the L1 metric.

PROOF. Construct the cones of the rays frompi through radius-ε balls centered at each
pk. The ray−−→pi pj intersects all balls if and only if it is in the intersection of these cones.
The key is to observe that (d − 1)-dimensional facets that define the boundary of these
cones can be separated into a constant number of families, where each family projects
to a halfplane in two dimensions.

Since the metric is defined by a convex polytope, each cone is a convex polyhedral
simplex: it is the intersection of hyperplanes throughpi and the(d − 2)-dimensional
faces, calledridges, that are on the silhouette of the ball atpk. For example, ridges in
three dimensions are one-dimensional edges of the 3-cube. Different views of a 3-cube
give cones of different cross sections, as shown in Figure 4, but all boundary facets of
the corresponding cone are planes throughpi and a ridge of the 3-cube.

To determine whether a pointpj is in the intersection of cones defined by balls at
pk for i < k < j , we form an instance of off-line interval-inclusion testing for each
ridge: A translated version of the ridger generates a halfspace whenever it appears on
the silhouette when viewed frompi ; since all halfspaces generated by translates ofr are
bounded by hyperplanes parallel tor that containpi , we can project each translate onto
the circle at infinity that is contained in the 2-flat throughpi and orthogonal to ridger .
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(a)

H
O x-axis of H

(b)

y-axis of H

Fig. 4. (a) Three different views of a cube from a point. (b) Three corresponding cross sections for a cone.

(Knowing the projection, the ridge, andpi we can reconstruct the hyperplane that forms
one of the cone’s boundary facets.)

By decomposability, pointpj is in the intersection of cones if and only if it is in
the intersection of their halfspaces, which happens if and only if the projection ofpj

is included in each instance of interval-inclusion testing. Thus,
−→
G can be constructed

by solving an instance of interval-inclusion testing for each ridge and intersecting the
solutions.

We complete the proof by counting ridges inL∞ andL1 polytopes. In thed-cube,
every pair of nonparallel planes generates a ridge, giving 2d(d − 1) ridges. In thed-
crosspolytope (ad-dimensionalL1 ball), a ridge is obtained by choosing positive or
negative vertices ford−1 of thed coordinate directions, givingd2d−1 ridges. Not every
ridge is on the silhouette: for the cube at most 2d will be. Ridges not on the silhouette
and ridges whose cubes containpi do not contribute constraints.

It is now straightforward to solve the min-# problem inO(n2) time for any constant
dimensiond with a constant-sized polytope for the metric. Note that the reduction to a
constant number (depending only ond) of two-dimensional problems allows us to use
only O(n) space, as in [9].

THEOREM8. Given an n-vertex polygonal path P in d dimensions, and a parameter
ε ≥ 0, one can find the fewest-vertex approximating path P′ to P in O(n2) time and
O(n) space under theε-tolerance-zone criterion using the L∞ or L1 error metric.

We solve thed-dimensional min-ε problem inO(n2 logn) time without using para-
metric search. Instead, we can explicitly construct the set,ERR(P), of all candidate
optimal ε values and then perform a simple binary search in this set using the min-#
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algorithm as the “probe.” We use the fact that the optimalε value must be determined
by some edge(pi , pj ) in G such that the farthest pointpk, with i < k < j , from the
segmentpi pj is at a distanceexactlyε from pi pj . When we fix the starting pointpi , we
can determine the farthest such pointpk for each edgepi pj in O(n logn) time. Thus,
we can compute the setERR(P) in O(n2 logn) time, and then perform a binary search
in this quadratic-size set inO(n2 logn) time using our quadratic-time min-# algorithm
as the “probe.”

We can actually achieve anO(n) space bound, but to do so we cannot afford to
maintain the error setERR(P) explicitly (since|ERR(P)| = O(n2)). Instead, we make
use of the sampling technique of [9], which allows us to store onlyO(n) errors of
ERR(P), while still being able to perform binary search on theO(n2) errors. Therefore,
we can achieve the following:

THEOREM9. Given an n-vertex polygonal path P in d dimensions, and an integer pa-
rameter m≤ n,one can find the best m-vertex approximating path P′ to P in O(n2 logn)
time under theε-tolerance-zone error criterion using the L∞ or L1 metric.

7. Conclusion. In this paper we present near-quadratic-time algorithms for solving
the min-# and min-ε polygonal-path approximation problem in three dimensions, and
subcubic-time algorithms for solving similar problems ind ≥ 4 dimensions. We also
generalize our solutions for theL1 andL∞ metrics.

A major related open problem is to show lower bounds for the problems discussed in
this paper.

Appendix. A Time/Space Tradeoff for the Off-Line Ball-Inclusion Problem. In
this Appendix we analyze space–time tradeoffs for the problem:

PROBLEM 1 (Reporting Points in Halfspaces). Givenn halfspaces andm points inEd,
report all points in the intersection of all halfspaces.

The solution to this problem is an important subroutine in(d−1)-dimensional off-line
ball inclusion, as outlined in Section 5. Balls and points are lifted to the paraboloid to
become hyperplanes and points, respectively, and the merge tree must solve the above
problem.

In the discussion in this Appendix, we use the notationO∗(·) instead of the usual
O(·) when we omit polylogarithmic factors and/or ε exponents. We can begin by using
divide and conquer to build a query structure on the halfspaces [13], [23], and then query
with the points. Balancing preprocessing and query time in divide and conquer gives the
following:

THEOREM10. The problem of reporting n points in n halfspaces can be solved in time
and space

O∗(n2−2/(bd/2c+1)).
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PROOF. With O∗(s) space and preprocessing time, the data structure can answer a query
in O∗(n2/s1/bd/2c) time forn queries. These balance at

s= n2−2/(bd/2c+1).

Divide-and-conquer approaches to compute many faces in arrangements exploit dual-
ity and the batched nature of the problem to obtain better bounds [1], [11]. Unfortunately,
we cannot do so because our problem is not self-dual: we can solve the problem for few
halfspaces and many points by intersecting halfspaces and querying thenbd/2c structure
with points, but for many halfspaces and few points we have to build the arrangement
of points and query anmd structure with hyperplanes. Thus we can only give a data
structure that has better space usage ford > 5.

THEOREM11. The problem of reporting n points in n halfspaces can be solved in time

O∗(n2−(d+bd/2c−2)/(dbd/2c−1))

and space

O∗(n3/2−1/(4bd/2c−2)).

We solve the problem by a recursive procedureP(m,n), using four different ap-
proaches depending on the values ofm andn:

1. If nbd/2c ≤ m, then compute the intersection of then halfspaces, preprocess for point
location, and locate them points. This takesO∗(m) time and space.

2. If
√

n ≤ m< nbd/2c, then choose a random sample ofr of then halfspaces, construct
their intersection, and form less thanr bd/2c cells where thei th cell is cut byni ≤ n/r
hyperplanes and containsmi of the points. Points that are not in the intersection of the
r sample hyperplanes will not be included in any cell. Recursively solve the problem
for the cells that contain points. We choose

r =
(

m2

n

)1/(2bd/2c−1)

,

which implies that the total number of hyperplanes in all subproblems is bounded
by

r bd/2c−1 = m1−1/(2bd/2c−1)n1/2+1/(4bd/2c−2).

(This, by the way, gives us our space bound whenm = n.) Notice thatr is constant
whenn ≈ m2, andr = n whenm≈ nbd/2c.

3. If n ≥ md, then solve the problem in dual space by constructing the arrangement
of the hyperplanes that are dual to them points, processing for point location, and
assigning the points dual to then hyperplanes to their cells in the arrangement. We
can then use graph search to determine which hyperplanes (dual to points) have no
occupied cells above them inO∗(n) time and space.
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4. If md > n > m2, then, in dual space, form the hyperplane arrangement of a sample
of t of the m duals of points and decompose the cells into simplices such that the
i th simplex is cut bymi ≤ m/t hyperplanes dual to points and containsni points
dual to hyperplanes. The primal view of this process is that the hyperplanes are
partitioned into bundles that have the same orientation with respect to the sample
points, and the points are distributed to each bundle that has halfspaces that do and
do not contain the point. Recursively solve the problem for the bundles that contain
points and are not outside of the intersection of all halfspaces outside of the bundle.
We choose

t =
( n

m2

)1/(d−2)
,

which implies that the total number of points in all subproblems is bounded by

mtd−1 = n1+1/(d−2)

m1+2/(d−2)
.

Notice thatt is constant whenn ≈ m2 andt = m whenn ≈ md.

The sample sizesr andt are chosen so as to maintain the number of points at the square
of the number of halfspaces.

If we let P(m,n)denote the time to solve an instance of the problem withmpoints and
n halfspaces, then we can show by induction that, forα = 1−(d−1)/(dbd/2c − 1)+ε/2
andβ = 1− (bd/2c − 1)/(dbd/2c − 1)+ ε/2,

P(m,n) ≤ mαnβ + npolylog+mpolylog,

where “polylog” stands for terms polylogarithmic inn andm. We consider the following
cases:

1. Base casenbd/2c ≤ m: As argued above,P(m,n) ≤ mpolylog.
2. Casen ≤ m2 < nd: We must pay for partitioning the points, distributing hyperplanes

to cells that they cut, and recursive computation. Using the fact thatni ≤ n/r and that
the maximum for H¨older’s inequality occurs when the points are evenly distributed,
we observe that

P(m,n) ≤
∑
cell i

(P(mi ,ni )+ ni polylog+mi polylog)

≤ nr bd/2c−1 polylog+mpolylog+
∑
cell i

P
(
mi ,

n

r

)
≤ r bd/2c

( m

r bd/2c
)α (n

r

)β
+ nr bd/2c−1 polylog+mpolylog

≤ mαnβr bd/2c−αbd/2c−β + nr bd/2c−1 polylog+mpolylog

≤ mαnβ + n polylog+mpolylog.

3. Base casen ≥ md: As argued above,P(m,n) ≤ n polylog.
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Table 2.Time/space tradeoff (exponents shown).

Theorem 10 Theorem 11

d Time and Space Time Improved Time Space

3 1.0 1.0 1.0 1.0
4 1.333 1.428 1.4 1.333
5 1.333 1.444 1.428 1.333
6 1.5 1.588 1.571 1.4
7 1.5 1.6 1.588 1.4
8 1.6 1.677 1.666 1.428
9 1.6 1.685 1.677 1.428

10 1.667 1.734 1.727 1.444

4. Casemd > n > m2: We must pay for partitioning the hyperplanes, distributing the
points, and recursive computation. Similar to Case 2,

P(m,n) ≤
∑
cell i

(P(mi ,ni )+mi polylog+ni polylog)

≤ mtd−1 polylog+n polylog+
∑
cell i

P
(m

t
,ni

)
≤ td

(m

t

)α ( n

td

)β
+mtd−1 polylog+n polylog

≤ mαnβ td−α−dβ +mtd−1 polylog+n polylog

≤ mαnβ + n polylog+mpolylog.

A small improvement in time is possible in our application: since all points lie on a
paraboloid, the recursion continues in onlyO(td−1) cells in case 4. One can therefore
choose

α = 1− d − 2

(d − 1)bd/2c − 1
+ ε

2

and

β = 1− bd/2c − 1

(d − 1)bd/2c − 1
+ ε

2

and obtain the running timeO∗(n2−(d+bd/2c−3)/((d−1)bd/2c−1)).
Table 2 shows the exponents onn for space and time in dimensions 3–10.
As we point out in Section 5, the space in this discussion is used only for solving the

off-line ball-inclusion problem, while the total space used by the algorithm is dominated
by the size of the graphG, which isθ(n2) in the worst case.
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