Algorithmica (2002) 33: 150-167 . .
DOI: 10.1007500453-001-0096-5 Al go rithmica

© 2002 Springer-Verlag New York Inc.

Efficiently Approximating Polygonal Paths in Three and
Higher Dimensions'

G. Barequet,D. Z. Chen® O. Daesci, M. T. Goodrich? and J. Snoeyirtk

Abstract. We present efficient algorithms for solving polygonal-path approximation problems in three and
higher dimensions. Given anvertex polygonal curvé® in RY, d > 3, we approximaté® by another poly-

gonal curveP’ of m < n vertices inRY such that the vertex sequenceRfis an ordered subsequence of

the vertices ofP. The goal is either to minimize the size of P’ for a given error tolerance (called the

min-# problem), or to minimize the deviation errerbetweenP and P’ for a given sizem of P’ (called

the min- problem). Our techniques enable us to develop efficient near-quadratic-time algorithms in three
dimensions and subcubic-time algorithms in four dimensions for solving the min-# and problems.

We discuss extensions of our solutionsdalimensional space, wheek > 4, and for theL; and L
metrics.

Key Words. Curve approximation, Parametric searching.

1. Introduction. Inthis paper we consider the problem of approximating an arbitrary
n-vertex polygonal pattP in three-dimensional space by another polygonal g&th
whose vertices form an ordered subsequence of the vertices in the origindt.pakn
further discuss this problem in tliedimensional space, whete> 4, and extend our
solutions for theL 1 andL ., metrics.

This problem arises in many applications, such as robotics, image processing, com-
puter graphics, cartography, and data compression. In these applications it is often de-
sirable to approximate a complex graphical or geometric object, which is specified by
a polygonal path, by a simpler object that captures the essence of the original object
yet achieves a certain degree of data compression [5], [27], [28]. For example, we have
been asked to compress three-dimensional path data for optic nerves acquired in medical
studies and of river networks in geographic information systems analysis of spawning

1 Work on this paper by the first and the fourth authors has been supported in part by the U.S. Army Research
Office under Grant DAAH04-96-1-0013. Work by the second and third authors has been supported in part by
the National Science Foundation under Grant CCR-9623585. Work by the fourth author has been supported
also by NSF Grant CCR-96-25289. Work by the fifth author has been supported by NSERC, CIES, and by the
Center for Geometric Computing at Johns Hopkins University.

2 Center for Geometric Computing, Department of Computer Science, Johns Hopkins University, Baltimore,
MD 21218, USA {barequet,goodrigi@cs.jhu.edu. (The first author is currently affiliated with the Faculty of
Computer Science at The Technion—Israel Institute of Technology.)

3 Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
{chen,odaes¢@cse.nd.edu.

4 Department of Computer Science, University of North Carolina at Chapel Hill, NC 27599-3175, USA.
snoeyink@cs.unc.edu.

Received January 10, 1999; revised November 8, 2000. Communicated by C.-K. Yap.
Online publication February 8, 2002.

Efficiently Approximating Polygonal Paths in Three and Higher Dimensions 151

habitat [24]. Path simplification is also important for devices with low speed, from pen
plotters to the World-Wide Web.

In general, the goal of the path-approximation problem is to replace a (very) high-
resolution pathP with an approximate patR’ that achieves significant time and space
improvements while suffering only a small approximation error. Two factors come to play
in such an approximation: the number of vertices in the approximation and the error be-
tween the approximation and the original path. These two factors give rise to two different
versions of the path-approximation problem—the miversion and the min-# version.

In the min< version one is given a parametar< n and asked to find an approximating

path P’ with at mostm vertices whoserror, ¢, from the original path is minimized.

This version of the problem is motivated by a desire to obtain the best approximation
possible that achieves a certain degree of data compression. In the min-# version of the
path-approximation problem one is instead given a paramete0 and asked to find

the smallest-vertex patR’ that is withinerror ¢ of the original path. This version of the
problem is motivated by a desire to obtain the smallest-complexity path that maintains a
certain level of accuracy. In this paper we study both versions af-ienensional path-
approximation problem (whexk > 3), for the usual metrit.,, and also folL; andL .

One issue that immediately arises in the path approximation problem is that one must
formalize the “error” between the original pahand the approximatioR’. We believe
that one of the most natural definitions is tliderance-zonerror measure [5], [21],

[22], [26]. Define thes-tolerance zonéfor ¢ > 0) of a line segmenpg to be the region

of space (or 2zoné) that is the union of all radius-balls centered at points along the
segmenipq (see Figure 1). This definition is, of course, parameterized by the metric
used to define radiusballs. We consider the usual Euclidean metkig, as well as the

L, and L, distance metrics. We may then formalize the path-approximation problem
as follows:

POLYGONAL PATH APPROXIMATION.
Given a polygonal patt? = (p1, p2, ..., pn), find a pathP’” = (pi,, Pis - -+, Piy)s
such that:

eije{l2....,n,forj=12...,m;

o ij <ijyp,forj=12...,m-1;and

o the subpathip;,, pi; 11, ..., pi,,,), for j =1,2,...,m— 1, is completely contained
in the e-tolerance zone for the segmemipi,_, -

If the subpathP, i, = (pi, pi+1.- .-, Pi,,) IS completely contained in the-

tolerance zone for the segmemip;,,,, we callp, pi,,, anapproximating line segment
for B

jolj+1t

Di Dj

Fig. 1. Thee-tolerance zone of a single segmgnp; .

152 G. Barequet, D. Z. Chen, O. Daescu, M. T. Goodrich, and J. Snoeyink

In the min¢ version of the path-approximation problem we are gimen< n and
wish to minimizes; in the min-# version we are given> 0 and wish to minimizen.
We restrict our attention to the version of this problem that requiregghat p; and
pi,, = pn. Inthe general version we only require thak i, and thatthe subpatiis ;, 1
andP, .1, are completely contained in theballs centered a®, andP, , respectively.
We explain later in the Introduction how to reduce the general problem to its restricted
version.

1.1. Related Previous Work Imai and Iri [21], [22] and Melkman and O’Rourke [26]
study the two-dimensional min-# and minpolygonal-path approximation problems.
Using the tolerance-zone measure of error, as defined above, they achieve algorithms
whose running times ar®(n?logn) and O(n?log?n), respectively, and us®(n?)

space, for the two problems. Chan and Chin [6] reduce the time complexity of both
results by a logarithmic factor. Chen and Daescu [9] further show that the algorithms of
[6] can use onlyO(n) space without increasing their running times.

Varadarajan [31] studies the min-# and maiproblems for two-dimensional poly-
gonal paths that are monotone, i.e., any line parallel toythgis intersects such a path
in a point. Given a monotone approximation of a monotone path, Varadarajan mea-
sures the error as the maximum distance between the intersection points with some
line parallel to they axis. He givesO(n*3+%) time and space algorithms for both
problems, wheré > 0 is an arbitrarily small constant. However, those algorithms
cannot be extended to the three-dimensional version of the problem or to the tolerance-
zone error criterion in two dimensions. The recursive simplification heuristic of
Douglas and Peucker [10], which is popular in GIS, does extend to curves in
three dimensions irD(n?) worst-case time, but solves neither the min-# nor the
min-¢ problems.

There has been other less-related, but still significant, work done on other metrics for
comparing two-dimensional polygonal paths [22] that do not necessarily use the same
set of vertices. Arkin et al. [3], Alt and Godau [2], and Rote [29] describe several metrics
for comparing polygonal curves. Guibas et al. [19] study different error measures for the
min-# problem, with an eye toward those that could be implement&{irlogn) time
by greedy algorithms. Fleischer et al. [15] approximate polygonal shapes by inner and
outer polygons and show their applications to the problems of polygon containment and
of planar motion planning.

Previous work on the three-dimensional path-approximation problem, that uses the
tolerance-zone measure of error, has given, to the best of our knowledge, algorithms
with supercubic time bounds. Ihm and Naylor [20] give @m?logm) algorithm for
the mine problem. Eu and Toussaint [14] restrict the polygonal chains to be monotonic
with respect to one of the three coordinate axes, and define the approximation in terms of
aninfinite-beanmeasure of error. In this measure of error one requires that each subpath
(Pi;» Pij+1. ..., Pi,,,) be completely contained in thetolerance zone of thafinite
line containing the segmefi, pi,,, called the infinite beam. When infinite beams are
defined in terms of the ; or L, metrics, Eu and Toussaint show how to achieve running
times ofO(n?) andO(n?) for the min-# and mire problems, respectively, for monotone
three-dimensional polygonal paths. Under the Euclidéa hetric, they consider the
three-dimensional version of the problem in [31] and give algorithms that r@(md)

Efficiently Approximating Polygonal Paths in Three and Higher Dimensions 153

| , |

@ (b) ©

Fig. 2. Approximations using the tolerance-zone and the infinite-beams measures of error. (a) Original path,
(b) tolerance zone, and (c) infinite beams.

and O(n®logn) time, respectively, for the min-# and minproblems on monotone
three-dimensional polygonal paths.

We believe that the tolerance-zone measure of error for segments captures better the
intuitive concept of the shape ofladimensional polygonal path. We illustrate in Figure 2
the difference between approximating a two-dimensional path with tolerance zones and
with infinite beams.

1.2. Our Results Inthis paper we give the first efficient algorithms for approximating

a polygonal path id dimensions, where > 3, for general (nonmonotonic) paths, using

the tolerance-zone measure of error for segments. We summarize the running times of
our methods in Table 1. The important thing to note is that all of our bounds are subcubic,
and most are nearly quadratic. Fairly straightforward bound® @) for min-# and
O(n®logn) for min-¢ follow by adapting previous two-dimensional results [6], [21],
[22], [26]. Even so, our approach still follows the general framework of these earlier
algorithms. To solve the min-# problem, we first build a gr&plon the vertices of

the input pathP, where each edge represents a valid “shortcut,” and we then perform

Table 1. Summary of our min-# and mintesults.

Three dimensions d > 4 Dimensions
Metric Min-# Min-¢ Min-# Min-¢
L, O(n?logn) 0O(n?log® n) 0O(n3-2/(19/21+D) polylogn) O(n/3 polylogn)*
L;andLe 0O(n?) 0O(n?logn) 0O(n?) O(n?logn)

*Ford = 4 only.

154 G. Barequet, D. Z. Chen, O. Daescu, M. T. Goodrich, and J. Snoeyink

a shortest-path computation @. To solve the mine problem we perform a “binary-
search-like” computation using the min-# algorithm as a “probe.”

Our algorithms differ from previous approaches in some important ways, however.
One of the fundamental differences is that we develoldimensional generalization
of the two-dimensional approach of Chan and Chin [6] for constructing the “shortcut”
graph G. Rather than constructing this graph directly, we instead construct it as the
intersection of two other graph§ and(C?, which respectively define tolerance zones
in terms of “semi-infinite” beams (pointing in opposite directions). The difficult part of
this computation is that, fixing an indexdi < n, we must determine, for each index
j withi < j < n,if the raybi‘ﬁ} originating atp; and passing througp; intersects
each radiug- ball centered at a vertep, fori < k < j. We reduce this problem to the
following data structuring problem:

OFF-LINE BALL-INCLUSION TESTING.
Maintain a collection of different-radius balls subject to a given sequence of the fol-
lowing operations:

e insert (B): Add ball B to the collection.
e inside (p): Determine if pointp is inside the common intersection of the balls.

Ford = 3, we refer to the problem above as the off-line disk-inclusion testing problem
(the balls are disks on athree-dimensional sphere) and provide a data structure for solving
this problem in amortize® (log n) time for inserts and queries, even though each disk
insertion can caus® (n) structural changes to the common intersection. We use this
data structure to derive ad(n? logn)-time algorithm for the min-# path approximation
problem. To turn this into an efficient algorithm for the mirproblem we give an
application of the parametric-search paradigm that is based upon a nontrivial parallel
version of our off-line inclusion testing data structure.

When thes-tolerance zones are defined using theor L, metrics, we can do better
than this. We present ad(n?)-time algorithm for the min-# problem and &(n? log n)-
time algorithm for the mire problem. For the latter algorithm we avoid using parametric
search.

Ford > 3, we show how to achieve a subcubic time for the min-# problem under the
L, metric. We also gived (n?)- andO(n? log n)-time algorithms (for a fixed > 3) for
the min-# and mire problems, respectively, under the andL ., metrics. The constants
hidden in the big-Oh notation depend dmnd on the used metric: they aBgd29) for
L1 andO(d?) for L.

The general version of the problem can be reduced to the version solved in this paper
(wherei; = 1 andi, = n) by adding toG two verticespy and pn1, and edge$op;
(resp.,pi pn+1), for 1 < i < n, if all the verticesp;, for1 < j < i (resp.,i < j <n)
are contained in an-ball centered ap;. This additional processing tak€x(n?) time,
and we then solve the restricted problem pgrand pp1.

The rest of the paper is organized as follows. In Section 2 we discuss some useful
structures for solving the min-# problem in three dimensions. In Section 3 we solve the
off-line disk-inclusion problem, which is a central ingredient of our algorithms. Then in
Section 4 we present an algorithm for solving the miproblem in three dimensions.

Efficiently Approximating Polygonal Paths in Three and Higher Dimensions 155

In Section 5 we generalize our algorithms for higher dimensions. Finally, in Section 6
we generalize our algorithms for thg andL ., metrics. We terminate in Section 7 with
some concluding remarks.

2. The Min-# Problem in Three Dimensions. In this section we present the main
ideas behind ou(n?logn)-time algorithm for solving the three-dimensional min-#
problem. The important part of this computation involves a reduction to the off-line
ball-inclusion testing problem, which we solve in Section 3.

Suppose then that we are given a three-dimensional polygonal Bus\gs, po, - . .,
pn), and an error value > 0, and we wish to find the smallest < n such that there is a
subpathP’ = (pi,, pi,, - - - » Pi,,) that satisfies the-tolerance-zone criterion (with = 1
andip, = n). As outlined in the Introduction, we solve this problem by the following
general approach:

1. Construct a grapls = (V, E), whereV is the vertex set oP and E consists of
directed edgesgp;, pj), 1 < i < j < n, such thafp; p; is an approximating line
segment of the subchaim;, pi41, ..., pj) of P.

2. Find a shortest path fromy to p, in G (i.e., a path with the fewest number of edges).
This path gives us the sought approximating cugve

Since the second step is easily solved by a breadth-first search computation, we concen-
trate on an efficient technique for constructi@grom P.

As mentioned above, we constr@&as the intersection of two grap@ andG . Say
that edge p;, p;) isinthe graphg if the raym originating atp; and passing through
p; intersects each radiusball B(py,) centered at a vertepy fori < k < j. Likewise,
say that edgép;, p;) is in the graphg if the rayﬁ originating atp; and passing
throughp; intersects eacB(py, ¢), fori < k < j. Itis an easy observation that an edge
(pi, pj) isin G if and only if it is in both G and G . Since the constructions of these
two graphs are symmetric computations, we concentrate further upon the construction
of the graph(_f.

In this section we show how to reduce the problem of determining the ed@s in
to the off-line disk-inclusion problem. We fix an indéxwith 1 < i < n, and focus
on computing all the edges of the forgp;, p;) in 6) fori < j < n. Say that the ray
W’j properly approximateshe polygonal chairgp;, ..., p;) if it intersects every ball
B(px, ¢) fori < k < j. Now imagine a “large” spher§ centered af;, and project
from p; all the ballsB(pk. ¢) (i < k < j) onto this sphere. Each ball(py, ¢) is then
projected to a dislog on the spher& (see Figure 3).

It is trivial to show that:

LEMMA 1. The raym is a proper approximation if and only:if

1. The intersection of the set of disR%i, j) = {Di;1, ..., Dj_1} on § is nonempty
2. The projection of pfrom p onto $ is found within the intersection of the disks in
D, j).

156 G. Barequet, D. Z. Chen, O. Daescu, M. T. Goodrich, and J. Snoeyink

Fig. 3. The projection of the radius-ball B(pk, ¢) centered apx onto the spher&. (S is not shown.)

This lemma gives us the ability to reduce the construction of all edges of the form
(pi, pj) in 6 for our fixed p;, to the off-line disk-inclusion problem. Specifically, we
define the operations:

e insert (Dj): Inserts diskD; to a data structure, whe is the projection oB(p;,)
onto the spher& usingp; as the center of projection.

e inside (pj): Returns “true” or “false,” depending on whether popit the projection
of pj onto§ usingp; as the center of projection, is contained by all the disks currently
in the data structure.

We then construct a sequenkeof insert andinside operations, as follows:

1: Initialize % to insert a disk containing the entire sph&e
2:for j=i+1ton

3 Append the operatioinside (p;) to %.

4: Append the operatioinsert (D;) to %;.

5: end for

Again, it is straightforward to show that:

LEMMA 2. The edge(p;, pj) is in G if and only if the response to the operation
inside (pj) in % is “true”

Thus, we have reduced the problem of construcﬁgto the problem of solving
n — 1 independent instances of the off-line disk-inclusion problem. We outline in the
next section how we can solve this problem efficiently.

3. The Off-Line Disk-Inclusion Problem. Suppose we are given a sequencef
ninsert (D;) andinside (p;) operations defining an instance of the off-line disk-
inclusion problem. In this section we show how to determine the answers to all the
inside (p;) queries iNO(nlogn) total time. Before we provide our solution we remark

Efficiently Approximating Polygonal Paths in Three and Higher Dimensions 157

that Sharir [30] and Eppstein [12] give data structures for maintaining the on-line in-
tersection of a collection of equal-radius disks. This data structure cannot be applied to
our disk-inclusion problem, however, as the disks in our problem do not in general have
equal radii.

We describe our solution to the off-line disk-inclusion problem. We begin by building
a complete binary tre€ such that each leaf df is associated with a different disk given
in the sequenc&. We order the leaves df from left to right in the order they are given
in the sequenc&. For each internal nodein T, let | (v) denote a representation of the
common intersection of the disks stored at leaf-descendantsvdé computd (v) for
all verticesv in T in a divide-and-conquer manner. In each node we maintain the lower
and upper envelopes of the intersections of the respective disks. Over all, the total time
required for constructing(v) for all verticesv is O(nlogn). It is important to observe
that each leaf of is associated with a different index & Thus, if aninside query
appears in positionin X, we can form a search path from the root ofT to the leaf
corresponding to the first insertion after positiorSay that a nodev of T is on the
left fringe of 7; if w is not onzx; but is a left child of a node om;. Noting that the
inside query is a decomposable search problem, we can ansviesida (p) query
for positioni by determining ifp is insidel (w) for eachw that is a left fringe node of;
(answering “true” if and only if it is inside them all). For eaeh the task is therefore to
determine whethep is above (resp., below) the lower (resp., upper) enveloge&of.
This amounts to locating the envelope arcs below and apavel then deciding whether
p is indeed contained ih(v). By using the fractional-cascading technique of Chazelle
and Guibas [7], [8] we are able to answer eawide query inX in O(logn) time.
This gives us the following:

THEOREM3. Givenasequence of ndiskinsert updatesand poiribside queries
one can answer all thimside queries inX in O(nlogn) time

Combining this with the discussion from the previous section immediately gives us
the following:

THEOREM4. Given an n-vertex polygonal path P in three-dimensional spaod
a parameters > 0, one can find the fewest-vertex approximating pathtd®P in
O(n?logn) time under the-tolerance-zone criterian

4. The Min-¢ Problem in Three Dimensions. We now turn to the mire problem.
Suppose then that we are given a three-dimensional polygonal Bugvep;, po, .. .,
pn), and an integer parameter < n, and we wish to find the smallest> 0 such
that there is a subpath’ = (pi,, pi,, ..., pi,) that satisfies the-tolerance-zone cri-
terion. For solving the min-problem we parallelize the min-# algorithm and invoke
it as a subroutine in a parametric search algorithm, where the sought saltitisn
the minimume for which there exists an approximating curve of no more timaver-
tices.

Infact, we do not really have to parallelize the entire min-# algorithm described above.
We need only parallelize the portions of the algorithm that depend upon the parameter

158 G. Barequet, D. Z. Chen, O. Daescu, M. T. Goodrich, and J. Snoeyink

¢. In the case of our min-# algorithm, the only place whemays a role is in the sizes

of the disks that are used in the off-line disk-inclusion algorithm. Thus, the only part of
the min-# algorithm that we need to parallelize is the off-line disk-inclusion algorithm
itself.

The following problem is a key to our algorithm: In the plane, ginatifferent-radius
disksdi, d, ..., dy andn pointsay, ay, . .., a,, determine for every = 1,2,...,n,
whetherg; € ITj = Mi_, di. We now give arO(log n)-time, O (n)-processor algorithm
for solving this problem in the parallel comparison model.

Ouralgorithmis based on Goodrich’s paradigm [16] for computing the upper envelope
of n surfaces in the so-callddintersecting class. We first build adeaf complete binary
treeT. Theith leaf of T storesd; anda;. Every internal node of T is associated with
(1) the intersectior (v) of the disks stored at the leaves of the subffgeooted atv
(of course,|l (v) needs to be computed); and (2) the pointAat) consisting of all the
pointsg stored at the leaves df,. Observe that, for every, the question of whether
a € ITj = ()/_, d can be answered by checking whetage | (v) for O(logn) nodes
v of the treeT.

One could use a naive parallel algorithm for computing kiie)’s and checking
whetherg; € | (v): Go up the treel level by level, starting from the leaves; for every
nodev at each level, first computgv) by merging the sorted sequences of the boundary
vertices ofl (x) and| (y), wherex andy are the left and right children af, and then
check whether the points d&(y) belong tol (x). This checking can also be done by
merging a sequence @&(y) (sorted lexicographically) with the boundary vertices of
I (x). At the root of T, we have the answers for all questions of whetigee IT;. This
naive algorithm can be easily implementedifiog nlog logn) time andO(n/log logn)
processors in the CREW PRAM model.

To obtain a faster algorithm in the parallel comparison model, we pipe-line the merge
operations in computing(v) from | (x) and ! (y) and in checking whethex; € | (v),
as in Goodrich’s paradigm. A logarithmic number of stages are used for this pipe-lined
procedure. Every (v) is maintained as a linked list. At the end of each stagelist
It (v) is stored av. We sayv is full whenl;(v) = | (v). The merge at the children ofis
pipe-lined tov by maintaining a list which is aapproximately uniform subsequer(see
[16]) of I¢(v). Thenli,1(v) is defined as; (x) U l;(y). The information for the points in
A(v) can be maintained and pipe-lined in a similar fashion a$ foy. These structures
at every node can be maintained i@ (1) time per stage. By following the techniques
of [16] it easily follows that the problem of checking whetlsgre II; for every | is
solvable inO(log n) time usingn processors in the parallel comparison model.

We then use this parallel algorithm to drive a parametric-search algorithm [25]. We
simulate each step of this parallel algorithm sequentially, noting that some of the com-
putations in this step depend upon whether the optimal v<adls in specific intervals
[£1, £2]. We find the mediau; in linear time and use the min-# algorithm as a subroutine,
running inO(n? log n) time, to determine if* is above or below this median. The answer
to this question resolves half of the comparisons for this parallel step. We can therefore
repeat this process recursively andinogn) calls to the min-# subroutine we will have
resolved all the comparisons for this parallel step. We then repeat this process for the
next parallel step. Since our parallel algorithm takes trogn), this implies that the
total running time for our mir-algorithm isO(n? log® n). Thus, we have the following:

Efficiently Approximating Polygonal Paths in Three and Higher Dimensions 159

THEOREM5. Given an n-vertex polygonal path P in three-dimensional spaice an
integer parameter nx n, one can find the best m-vertex approximating pattoFP in
O(n?log® n) time under the:-tolerance-zone criterian

The above discussion assumes that the underlying metric for defining radalls
is theL, metric. In Section 6 we explore improvements and simplifications that can be
achieved if we use the; or L, metrics for this purpose.

5. The Min-# and Min-¢ Problems ind > 4 Dimensions. As in three dimensions,

the key to solving the min-# problem ith dimensions is to reduce it to the off-line
ball-inclusion problem in a lower-dimensional space and apply decomposability to the
ball-inclusion problem. We describe below the ideas of this technique.

In order to approximate d-dimensional curve, we solve off-line ball-inclusion
problems, each performin@(n) inclusion tests of points ikd — 1)-balls. By a stan-
dard lifting map, testing if a point is in a set ¢ — 1)-balls is equivalent to asking
whether a point ind dimensions is below the lower envelope of a collectiondef
dimensional hyperplanes: The query point is lifted to a paraboloid, and the balls are
mapped to hyperplanes; the intersections of dhdimensional hyperplanes with the
paraboloid, projected intd — 1 dimensions, are the original balls. (See [4] for more
details.)

Thus, to solve one instance of off-line ball inclusion, we build a static data structure
for answering ray-shooting queries (see [13] and [23]), using a parasteteontrol a
tradeoff between query time and spAgeeprocessing time. In particular, we build a ray-
shooting data structure i@ (s polylogn) space and preprocessing time, that can answer
each ray-shooting query i®(nlogn/s/19/2)) time. In the Appendix we give a more
complete discussion of the tirfgpace tradeoff for the off-line ball-inclusion problem.

Now, to solve a min-# problem, we have to buildata structures and ask(n?)
queries. If we balance the time required for the preprocessing and for performing the
queries, we find out that = O(n?~%(9/21+D polylogn) and consequently obtain an
O(n3-2/(9/21+1) polylogn)-time algorithm. Fod = 4 or 5, for example, this gives us
an algorithm for the min-# problem (under the metric) that runs irO(n’/3 polylogn)
time. Only ford > 19 does the running time of the algorithm exce®a?2 polylogn).

Since each ray-shooting data structure has subquadratic space, and we only need one
structure at a time, the amount of space required by this algorithm is still dominated by
the maximum size of the gragh, which is® (n?). Thus, ford dimensions we obtain:

THEOREMG6. Given an n-vertex polygonal path P in d-dimensional spacel an
integer parameter nx n, one can find the best m-vertex approximating pattoRP in
O(n®-%(4/21+D polylogn) time by using @n?) space

For the mine problem in four dimensions we need only observe (as for the three-
dimensional version of the problem) that we have to parallelize only the steps in the
sequential min-# algorithm that depend arfor this purpose we use the ray-shooting
data structure of [17] and [18]. With some preprocessing, the construction of this data
structure does not depend on the value.dh this data structure the points are sorted

160 G. Barequet, D. Z. Chen, O. Daescu, M. T. Goodrich, and J. Snoeyink

according to their respective coordinates in parallel. As in the three-dimensional case,
we perform the ray-shooting queries in parallel, which costs u®dag? n) factor in

the running time. Over all, we obtain @ (n’/3 polylogn)-time algorithm for the four-
dimensional mire problem under thé&., metric. Note that this method does not easily
extend to dimensions higher than four because of the possibly large complexities of the
ray-shooting cells in high dimensions.

6. The Min-# and Min-e Problems for L, and L ., Metrics in d Dimensions. In this
section we present our algorithms for the min-# and mimeblems under thie; andL o,
metrics. Decomposability of on-line ball inclusion, and the fact that the unit balls in these
metrics are polytopes of constant complexity for consthrallow us to give efficient
general solutions i dimensions. We describe our algorithm for théolerance-zone
measure of error.

Recall that to compute the gra@ we had to determine, for a fixed index<li < n
and eachi < j < n, whether the ram intersects each radiusball centered at a
vertex px fori < k < j. As Figure 3 illustrates, the rays from that intersect the
radiuse ball aroundpy form acone If the ball at px containsp;, then the cone is the
entire space.

UnderlL;, Ly, or any metric whose ball is a polytope whose complexity depends

only ond, we can reduce the problem of constructing the gr@)m a constant number
of instances of the one-dimensional version of the ball-inclusion problem, which is
one-dimensional off-line interval-inclusion testing.

LEMMA 7. In d dimensionsthe question of whether a raﬁ intersects each ball
B(px, €), fori < k < j, reduces to @d?) instances of off-line interval-inclusion testing
for the L., metric or O(d2%) instances for the Lmetric

PrOOF Construct the cones of the rays frggnthrough radius balls centered at each

k- The raypi p; intersects all balls if and only if it is in the intersection of these cones.
The key is to observe thadl — 1)-dimensional facets that define the boundary of these
cones can be separated into a constant number of families, where each family projects
to a halfplane in two dimensions.

Since the metric is defined by a convex polytope, each cone is a convex polyhedral
simplex: it is the intersection of hyperplanes throyghand the(d — 2)-dimensional
faces, calledidges that are on the silhouette of the ball@t For example, ridges in
three dimensions are one-dimensional edges of the 3-cube. Different views of a 3-cube
give cones of different cross sections, as shown in Figure 4, but all boundary facets of
the corresponding cone are planes thropghnd a ridge of the 3-cube.

To determine whether a poirg is in the intersection of cones defined by balls at
pk fori < k < j, we form an instance of off-line interval-inclusion testing for each
ridge: A translated version of the ridgegenerates a halfspace whenever it appears on
the silhouette when viewed from; since all halfspaces generated by translatesaoé
bounded by hyperplanes parallektthat containp;, we can project each translate onto
the circle at infinity that is contained in the 2-flat throughand orthogonal to ridge.

Efficiently Approximating Polygonal Paths in Three and Higher Dimensions 161

Sy |
0 1 |
/__*\ L4 - T N
€Y
y-axisof H
. H
o x-axis of H

(b)

Fig. 4. (a) Three different views of a cube from a point. (b) Three corresponding cross sections for a cone.

(Knowing the projection, the ridge, angl we can reconstruct the hyperplane that forms
one of the cone’s boundary facets.)

By decomposability, poinp; is in the intersection of cones if and only if it is in
the intersection of their halfspaces, which happens if and only if the projectign of

is included in each instance of interval-inclusion testing. Tlﬁscan be constructed
by solving an instance of interval-inclusion testing for each ridge and intersecting the
solutions.

We complete the proof by counting ridgeslin, andL; polytopes. In thed-cube,
every pair of nonparallel planes generates a ridge, givoh@ 2- 1) ridges. In thed-
crosspolytope (al-dimensionall; ball), a ridge is obtained by choosing positive or
negative vertices faid — 1 of thed coordinate directions, giving2¢—? ridges. Not every
ridge is on the silhouette: for the cube at modtvll be. Ridges not on the silhouette
and ridges whose cubes contgindo not contribute constraints. O

It is now straightforward to solve the min-# problem@yn?) time for any constant
dimensiond with a constant-sized polytope for the metric. Note that the reduction to a
constant number (depending only dhof two-dimensional problems allows us to use
only O(n) space, as in [9].

THEOREMS8. Given an n-vertex polygonal path P in d dimensicensd a parameter
e > 0, one can find the fewest-vertex approximating pathaPP in O(n?) time and
O(n) space under the-tolerance-zone criterion using the,Lor L, error metric.

We solve thed-dimensional mire problem inO(n? logn) time without using para-
metric search. Instead, we can explicitly construct the ERIR P), of all candidate
optimal ¢ values and then perform a simple binary search in this set using the min-#

162 G. Barequet, D. Z. Chen, O. Daescu, M. T. Goodrich, and J. Snoeyink

algorithm as the “probe.” We use the fact that the optimahlue must be determined
by some edgépi, p;) in G such that the farthest poim, withi < k < j, from the
segmen; pj is at a distancexactlys from P p;. When we fix the starting point;, we
can determine the farthest such pojtfor each edggp; in O(nlogn) time. Thus,
we can compute the sERRP) in O(n?logn) time, and then perform a binary search
in this quadratic-size set i®(n?logn) time using our quadratic-time min-# algorithm
as the “probe.”

We can actually achieve a@(n) space bound, but to do so we cannot afford to
maintain the error ssRRP) explicitly (since]ERR P)| = O(n?)). Instead, we make
use of the sampling technique of [9], which allows us to store @yn) errors of
ERRP), while still being able to perform binary search on tén?) errors. Therefore,
we can achieve the following:

THEOREM9. Given an n-vertex polygonal path P in d dimensiaral an integer pa-
rameter m< n, one can find the best m-vertex approximating pattofP in O(n?logn)
time under the:-tolerance-zone error criterion using the,L.or L, metric

7. Conclusion. In this paper we present near-quadratic-time algorithms for solving
the min-# and mire polygonal-path approximation problem in three dimensions, and
subcubic-time algorithms for solving similar problemsdre> 4 dimensions. We also
generalize our solutions for tHe andL ., metrics.

A major related open problem is to show lower bounds for the problems discussed in
this paper.

Appendix. A Time/Space Tradeoff for the Off-Line Ball-Inclusion Problem. In
this Appendix we analyze space—time tradeoffs for the problem:

PROBLEM 1 (Reporting Points in Halfspaces). Givehalfspaces anth points inEY,
report all points in the intersection of all halfspaces.

The solution to this problem is an important subroutin@in 1)-dimensional off-line
ball inclusion, as outlined in Section 5. Balls and points are lifted to the paraboloid to
become hyperplanes and points, respectively, and the merge tree must solve the above
problem.

In the discussion in this Appendix, we use the notat@dt(-) instead of the usual
O(-) when we omit polylogarithmic factors apar ¢ exponents. We can begin by using
divide and conquer to build a query structure on the halfspaces [13], [23], and then query
with the points. Balancing preprocessing and query time in divide and conquer gives the
following:

THEOREM10. The problem of reporting n points in n halfspaces can be solved in time
and space

O*(n2—2/(Ld/2J+l))‘

Efficiently Approximating Polygonal Paths in Three and Higher Dimensions 163

ProoOE With O*(s) space and preprocessing time, the data structure can answer a query
in O*(n?/sY/19/2ly time for n queries. These balance at

s — n2-2/(1d/21+D) 0

Divide-and-conquer approaches to compute many faces in arrangements exploit dual-

ity and the batched nature of the problem to obtain better bounds [1], [11]. Unfortunately,
we cannot do so because our problem is not self-dual: we can solve the problem for few
halfspaces and many points by intersecting halfspaces and querying/festructure

with points, but for many halfspaces and few points we have to build the arrangement
of points and query am® structure with hyperplanes. Thus we can only give a data
structure that has better space usagelfor 5.

THEOREM11. The problem of reporting n points in n halfspaces can be solved in time

O* (nZ—(d+|_d/2j —2)/(d|_d/2j—1))

and space

O*(n¥/2-1/@ld/21-2)y

We solve the problem by a recursive proced@éregm, n), using four different ap-

proaches depending on the valuesrodndn:

1.

2.

If nl9/2) < m, then compute the intersection of théalfspaces, preprocess for point
location, and locate th points. This take©*(m) time and space.

If /N < m < nl9/2 then choose a random sample aff then halfspaces, construct
their intersection, and form less thatd/2 cells where théth cell is cut byn; < n/r
hyperplanes and containsg of the points. Points that are not in the intersection of the

r sample hyperplanes will not be included in any cell. Recursively solve the problem
for the cells that contain points. We choose

1/(2|d/2]—-1

(m2>/(l/J)

r=(— :
n

which implies that the total number of hyperplanes in all subproblems is bounded
by
rLd/2j—1 — ml—l/(2Ld/2J—1)n1/2+1/(4Ld/2j—2)'

(This, by the way, gives us our space bound whes: n.) Notice thatr is constant
whenn ~ m?, andr = n whenm ~ nl9/2],

. If n > m9, then solve the problem in dual space by constructing the arrangement

of the hyperplanes that are dual to tepoints, processing for point location, and
assigning the points dual to tlmehyperplanes to their cells in the arrangement. We
can then use graph search to determine which hyperplanes (dual to points) have no
occupied cells above them @*(n) time and space.

164 G. Barequet, D. Z. Chen, O. Daescu, M. T. Goodrich, and J. Snoeyink

4. Ifmd > n > m?, then, in dual space, form the hyperplane arrangement of a sample
of t of the m duals of points and decompose the cells into simplices such that the
ith simplex is cut bym; < m/t hyperplanes dual to points and contamspoints
dual to hyperplanes. The primal view of this process is that the hyperplanes are
partitioned into bundles that have the same orientation with respect to the sample
points, and the points are distributed to each bundle that has halfspaces that do and
do not contain the point. Recursively solve the problem for the bundles that contain
points and are not outside of the intersection of all halfspaces outside of the bundle.

We choose
n \ /-2
t=(e)

which implies that the total number of points in all subproblems is bounded by

ni+1/d-2)

d—1 __
mt = Ahza s

Notice thatt is constant when ~ m? andt = mwhenn ~ m¢.

The sample sizesandt are chosen so as to maintain the number of points at the square
of the number of halfspaces.
Ifwe let P(m, n) denote the time to solve an instance of the problem migwoints and
n halfspaces, then we can show by induction thatyfer 1—(d—1)/(d|d/2] — 1)+¢/2
andg =1-(|d/2] —1)/d[d/2] — 1) +¢€/2,

P(m, n) < m*n? 4+ npolylog+ mpolylog,

where “polylog” stands for terms polylogarithmicrirandm. We consider the following
cases:

1. Base casel%? < m: As argued aboveR (m, n) < mpolylog.

2. Casen < m? < nd: We must pay for partitioning the points, distributing hyperplanes
to cells that they cut, and recursive computation. Using the fachthatn/r and that
the maximum for llder’s inequality occurs when the points are evenly distributed,
we observe that

P(m, n)

IA

> (P(m;, i) + n; polylog+m; polylog)

celli

IA

1d/2)-1 N
nr polylog+ mpolylog+ Z P (ml, .)

celli

m N\« /n\#
rld/2] (m> (F) + nrl92/=1 polylog+ mpolylog

IA

A

m*nfrd/21—eld/2]=F 4 nrld/2-1 nolylog+ mpolylog

< m*n’? + npolylog+ mpolylog.

3. Base casa > m®: As argued aboveR(m, n) < npolylog.

Efficiently Approximating Polygonal Paths in Three and Higher Dimensions 165

Table 2. Time/space tradeoff (exponents shown).

Theorem 10 Theorem 11
d Time and Space Time Improved Time Space
3 1.0 1.0 1.0 1.0
4 1.333 1.428 1.4 1.333
5 1.333 1.444 1.428 1.333
6 1.5 1.588 1.571 1.4
7 1.5 1.6 1.588 1.4
8 1.6 1.677 1.666 1.428
9 1.6 1.685 1.677 1.428
10 1.667 1.734 1.727 1.444

4. Casem® > n > m? We must pay for partitioning the hyperplanes, distributing the
points, and recursive computation. Similar to Case 2,

P(m,n) < Y (P(m;,n) +m polylog+ n; polylog)
celli

< mt%!polylog+ n polylog+ Z P (T, ni>

celli t

IA

d (M Ny d-1
t (t) (td> + mt"~* polylog+ n polylog
< m*nft9=e=% 4 mt9~1 polylog+ n polylog

< m*n’ + npolylog+ mpolylog.

A small improvement in time is possible in our application: since all points lie on a
paraboloid, the recursion continues in oiyt9-1) cells in case 4. One can therefore
choose

4. 94=2 €
YT T d-Dd2/-1" 2

and
5 1d/2] —1 p

Cd-1ld/2 -1 2

and obtain the running tim@*(n?-(@+1d/21-3/(@d-1)1d/2]-1))

Table 2 shows the exponents oifior space and time in dimensions 3-10.

As we point out in Section 5, the space in this discussion is used only for solving the
off-line ball-inclusion problem, while the total space used by the algorithm is dominated
by the size of the grap&, which isé(n?) in the worst case.

References

[1] P. K. Agarwal, J. Matosék, and O. Schwarzkopf, Computing many faces in arrangements of lines and
segmentsSIAM Journal on Computin@®7 (1998), 491-505.

[2] H. Altand M. Godau, Measuring the resemblance of polygonal cuRes, 8th Ann ACM Sympon
Computational GeometrBerlin, pp. 102-109, 1992.

166

(3]

(4]

(5]
(6]

(71
(8]
[9]
(20]
(11]
(12]
(13]
(14]
[15]

(16]

(17]
(18]

[19]

(20]

[21]
[22]
[23]
[24]
[25]
[26]
[27]

(28]

G. Barequet, D. Z. Chen, O. Daescu, M. T. Goodrich, and J. Snoeyink

E. M. Arkin, L. P. Chew, D. P. Huttenlocher, K. Kedem, and J. S. B. Mitchell, An efficiently com-
putable metric for comparing polygonal shap&EE Transactions on Pattern Analysis and Machine
Intelligence 13(1991), 209-216.

K. Q. Brown, Geometric transforms for fast geometric algorithms, Ph.D. Thesis, Department of Com-
puter Science, Carnegie-Mellon University, Pittsburgh, PA, 1980.

B. Buttenfield, Treatment of the cartographic lit@grtographica 22 (1996), 1-26.

W. S. Chan and F. Chin, Approximation of polygonal curves with minimum number of line segments or
minimum error,International Journal of Computational Geometry and Applicatidh€l996), 59-77.

B. Chazelle and L. J. Guibas, Fractional cascading: I. A data structuring techipagithmica 1
(1986), 133-162.

B. Chazelle and L. J. Guibas, Fractional cascading: Il. Applicatidiggrithmica 1 (1986), 163—191.

D. Z. Chen and O. Daescu, Space-efficient algorithms for approximating polygonal curves in two-
dimensional spac@roc. 4th Ann Internat Computing and Combinatorics Coyifaipei, Lecture Notes

in Computer Science, vol. 1449, pp. 45-54, Springer-Verlag, Berlin, 1998.

D. H. Douglas and T. K. Peucker, Algorithms for the reduction of the number of points required to
represent a digitized line or its caricatu@gnadian Cartographerl0(1973), 112-122.

H. Edelsbrunner, L. J. Guibas, and M. Sharir, The complexity and construction of many faces in
arrangements of lines and of segmefliscrete & Computational Geometr§ (1990), 161-196.

D. Eppstein, Faster construction of planar two-centerse. 8th ACM—-SIAM Sympn Discrete Algo-
rithms, New Orleans, LA, 131-138, 1997.

J. Erickson, Space—time tradeoffs for emptiness quesiédyl Journal on Computin@9(2000), 1968—
1996.

D. Eu and G. T. Toussaint, On approximation polygonal curves in two and three dimerG\WaE>:
Graphical Models and Image Processjrig (1994), 231-246.

R. Fleischer, K. Mehlhorn, G. Rote, E. Welzl, and C.-K. Yap, Simultaneous inner and outer approxi-
mation of shapedlgorithmica 8 (1992), 365-389.

M. T. Goodrich, Using approximation algorithms to design parallel algorithms that may ignore processor
allocation,Proc. 32nd Ann IEEE Sympon Foundations of Computer Scien&an Juan, Puerto Rico,

pp. 711-722, 1991.

M. T. Goodrich and R. Tamassia, Dynamic ray shooting and shortest paths in planar subdivisions via
balanced geodesic triangulatiodsurnal of Algorithms23(1997), 51-73.

M. T. Goodrich and R. Tamassia, Dynamic trees and dynamic point loc&Iém Journal on Com-
puting, 28 (1999), 612-636.

L.J. Guibas, J. E. Hershberger, J. S. B. Mitchell, and J. S. Snoeyink, Approximating polygons and subdi-
visions with minimum link pathdnternational Journal of Computational Geometry and Applications
3(1993), 383-415.

I. Ihm and B. Naylor, Piecewise linear approximations of digitized space curves with applications, in
Scientific Visualization of Physical Phenomiiha M. Patrikalakis, ed.), pp. 545-569, Springer-Verlag,
Tokyo, 1991.

H. Imai and M. Iri, Computational-geometric methods for polygonal approximations of a cCove;

puter Vision Graphics and Image Processing6 (1986), 31-41.

H. Imai and M. Iri, Polygonal approximations of a curve-formulations and algorithn@gmputational
Morphology(G. Toussaint, ed.), pp. 71-86, North-Holland, Amsterdam, 1988.

J. Matowsek and O. Schwarzkopf, On ray shooting in convex polytopescrete & Computational
Geometry10(1993), 215-232.

M. McAllister and J. Snoeyink, Medial axis generalisation of hydrology netwotkgpCarto 13:
ACSMASPRS AnrConvention Technical PaperSeattle, WA, pp. 164-173, 1997.

N. Megiddo, Applying parallel computation algorithms in the design of serial algorithmsnal of

the ACM 30 (1983), 852—865.

A. Melkman and J. O’Rourke, On polygonal chain approximationComputational Morphology

(G. Toussaint, ed.), pp. 87-95, North-Holland, Amsterdam, 1988.

B. K. Natarajan, On comparing and compressing piecewise linear curves, Technical Report, Hewlett
Packard, 1991.

B. K. Natarajan and J. Ruppert, On sparse approximations of curves and funetionglith Canadian

Cont on Computational Geometr$t. John’s, Newfoundland, pp. 250-256, 1992.

Efficiently Approximating Polygonal Paths in Three and Higher Dimensions 167

[29] G. Rote, A new metric between polygons, and how to compu®eadt. 1%h Internat Collog. Automata
Languagesand ProgrammingVienna, Lecture Notes in Computer Science, vol. 623, pp. 404-415,
Springer-Verlag, Berlin, 1992.

[30] M. Sharir, Anear-linear algorithm for the planar 2-center probBiscrete & Computational Geometry
18(1997), 125-134.

[31] K. R. Varadarajan, Approximating monotone polygonal curves using the uniform nfetoic, 12th
Ann ACM Sympon Computational GeometrPhiladelphia, PA, pp. 311-318, 1996.

