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Abstract

In the Constructive Solid Geometry (CSG) representation a geometric object
is described as the hierarchical combination of a number of primitive shapes using
the operations union, intersection, subtraction, and exclusive-union. This hierar-
chical description defines an expression tree, T', called the CSG tree, with leaves
associated with primitive shapes, internal nodes associated with operations, and
whose “value” is the geometric object. Evaluation of CSG trees is an important
computation that arises in many rendering and analysis problems for geometric
models, with ray shooting (also known as “ray casting”) being one of the most
important. Given any CSG tree T', which may be unbalanced, we show how to
convert 7" into a functionally-equivalent tree, D, that is balanced. We demon-
strate the utility of this conversion by showing how it can be used to improve
the worst-case running time for ray shooting against a CSG model from O(n?)
to O(nlogn), which is optimal.
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Figure 1: A CSG Representation. We use + to denote union and * to denote
intersection. Other possible operations are subtraction (—) and exclusive-union

(®).

1 Introduction

Allowing a user to define, manipulate, and analyze realistic geometric objects easily and
efficiently is an important goal of geometric modeling. One representation for geometric
objects that has received much attention of late, relative to this goal, is the Constructive
Solid Geometry (CSG) representation (e.g., see [46] or [34]). An object is represented in this
model by a set of primitive objects that are hierarchically combined according to various
set operations, such as intersection, union, subtraction, and exclusive-union (i.e., all points
in one or the other, but not both). (See Figure 1.) This hierarchical description defines an
expression tree, T' called the CSG tree, with leaves associated with primitive shapes, internal
nodes associated with operations, and whose “value” is the geometric object.

One of the principle advantages of the CSG representation is that it allows the user to
define objects in a “bottom-up” fashion, and coincides naturally with the way many people
visualize the object being defined. Unfortunately, many natural ways in which to define
CSG trees give rise to unbalanced trees, whereas balanced CSG trees would often be most
desirable from a computational standpoint. Indeed, there are a number of fundamental
computations involving CSG representations that benefit from being given a balanced tree.

Perhaps the most important such computation is line classification [55, 56]: determining
the intersections of a line with an object defined by a CSG representation, for it is the
primitive computation used in many CSG rendering algorithms [26, 28, 34, 38, 46, 48].



1.1 Our Results

In this paper we show how to convert any CSG tree T into a functionally-equivalent balanced
tree D of roughly the same size as T, and we show how this leads to a method for line
classification in a CSG model that runs in O(nlogn) time, which is optimal and improves
the previous O(n?) bound, due to Tilove [55, 56] and Getto [28], where n is the total number
of edges that determine all the primitives stored at the leaves of 7. Our method can be
implemented using simple operations, such as sorting and table look-ups, and does not
require any sophisticated data structures. Moreover, one can apply many of the previous
heuristic techniques for speeding up CSG ray shooting to our methods, such as “bounding
boxes” [28, 29, 47, 49, 50, 51] and face cutting [37], although none of these heuristics would
improve the worst case running time. As an aid to practitioners, we also enumerate some
additional heuristics that one can apply to make our method run faster in practice. Thus, we
believe our method should run very fast in practice, compared to previous methods. Indeed,
justification for this claim has been given recently by Facello [25] in some benchmarking
tests.

The main paradigm we exploit for our algorithms is the tree contraction technique [,
7, 36, 45, 40] from parallel algorithm design. The particular approach we follow is that
proposed by Miller and Reif [40], where one applies two procedures, “rake” and “compress”,
to evaluate an m-leaf arithmetic expression tree in parallel [1, 36, 40]. This results in a
method that runs in O(log m) parallel steps, even if the tree is quite imbalanced. We use
this tree contraction paradigm to convert any given m-leaf CSG tree T' into a functionally-
equivalent m-leaf expression tree D. Letting h(D) denote the height' of D, we show that
construction guarantees that h(D) is O(logm) and that the size of D is O(m), even if T
is quite unbalanced and contains exclusive-union nodes. Moreover, even though this is an
asymptotic bound, our method guarantees that h(D) < h(T'). We call D the dwarf CSG

tree.

1.2 Related Results

Our research is directed at the application of computational geometry techniques to problems
in computer graphics. This area has become a very rich research area of late, and the
reader interested in an overview of this previous work is referred to the excellent papers by
Dobkin [16] and Yao [58]. A good example of such work is the recent work of a number of
researchers, including Dobkin and Kirkpatrick [18, 20, 19] and others [2, 4, 8, 10, 11, 15, 30,
32, 33, 43, 52| directed at maintaining a collection of objects in R? so as to quickly answer
ray shooting queries. Such data structures could be used, for example, in ray-tracing of a
3-d solid model, assuming one is given a polygonal description of all the faces of the model
(which, of course, one does not have in the CSG representation). Interestingly, another
example application of computational geometry techniques to computer graphics has been
for the problem of constructing a concise CSG representation of an object given its boundary

'Recall that the height of a binary tree T' is the length of a longest root-to-leaf path in T' (so that the
height of single-node tree is 0).



description (e.g., see Dobkin et al. [17] or Patterson and Yao [42]), which can be viewed as
an “inverse” problem to the one that we address here.

More specific to this paper, however, our research is directed at applying a technique from
parallel algorithm design to a sequential problem in solid modeling. Our application of this
paradigm is therefore somewhat reminiscent of a technique due to Megiddo [39], which is also
an application of techniques from parallel algorithm design to improve the time bounds for
sequential problems. Incidentally, variants of Megiddo’s technique have proven very effective
of late at improving the running times of several geometric optimization problems. Some
examples include the ray shooting method of Agarwal and Matousek [4], the “biggest stick”
method of Agarwal, Sharir, and Toledo [5], the “largest polygon” algorithm of Toledo [57],
the ham-sandwich cut algorithm of Cole [13], the distance-selection method of Agarwal et
al. [3], and the closest-pair algorithms of Chazelle et al. [9].

One of the nice side effects of using a technique from parallel algorithm design for a
sequential algorithm, is that it makes the parallelization of that method much more likely.
Indeed, this is exactly what has occurred, in that subsequent to the initial announcement of
this work, Goodrich, Ghouse, and Bright [31] have shown how our tree-contraction method
can be applied to ray shooting of CSG models, and even to more complicated classification
problems, such as boundary evaluation. Besides this, the most notable previous parallel
effort has been the work of Ellis et al. [24] on a special-purpose machine, which they call
the RayCasting Engine, for line classification of 3-dimensional CSG objects. Their machine
has over 250,000 special-purpose processors dedicated to CSG classification. Incidentally,
our method could also be implemented in hardware in a fashion similar to that used in the
RayCasting Engine, which would lead to a pipelined parallel scheme for CSG ray shooting
that would achieve a latency? of O(log n), whereas the RayCasting Engine may have a latency
of ©(n) if the input CSG tree is unbalanced.

The specific problem of classifying a line against a CSG model was first studied by
Tilove [55, 56], who gave a method from which one can derive an O(n?)-time method. This
bound was achieved explicitly more recently by Getto [28], who also gave some heuristics
that should help this classification algorithm run faster in practice. Since classification of
lines and other geometric objects (such as the CSG model’s boundary) is such a fundamental
problem, a considerable amount of work (e.g., see [24, 28, 29, 37, 41, 47, 48, 49, 54]) has been
directed at methods for improving these running times. None of these methods run faster
than O(n?) in the worst case, however—they are all based upon heuristics that should work
well in practice but do not improve the worst-case running time.

Some methods have running times that are intersection sensitive, meaning that their
time bounds depend on I, the number of intersection points determined by the m primitives.
Examples include the 2-D boundary evaluation methods of Ottmann et al. [41], which runs
in O((n + I)(m + logn)) time, and Tawfik [54], which runs in O(nlogn + I) time. If [ is
much smaller than in the worst case (i.e., if [ << (g) ), then these methods will run in o(n?)

time, but it is also easy to construct examples where they run in £(n?) time, as well.
Some other methods are based upon a heuristic that exploits spatial locality, that is, the

?Recall that the latency of a pipeline is the time between the input of a set of values and the output value
for this set.



geometric relationships that the primitives have with one another because they are embedded
in a Euclidean space. The usual way that this locality is exploited is to partition the space to
which the CSG solid belongs into simple cells, such as boxes, so as to reduce the number of
computations that must be performed. The main idea is to restrict comparisons to primitives
that are geometrically “near” the object being classified [28, 29, 47, 49, 50, 51]. Typically,
this 1s implemented using the well-known “bounding box” technique, where one bounds a
primitive or group of primitives by a box and first performs geometric comparisons with
this box before attempting comparisons with any of the primitives it contains (for these
comparisons may be unnecessary). This approach works well if most of the bounding boxes
are disjoint, but will actually increase the running time if most of them overlap.

Yet another kind of locality that some methods have tried to exploit is structural locality,
that is, the structural relationships that the primitives have with one another because they
define the leaves of the CSG tree T'. The usual way that this locality is exploited is to
restructure 7" into a functionally-equivalent tree 7" that is “simpler” than 7. The tree T" is
functionally-equivalent to T if there is a clear mapping of the inputs of 7' to inputs of 7" and
the result of applying the operations of T' to a set of input values (e.g., geometric primitives)
is the same as produced by applying the operations of T” to the corresponding input values.
A common way that this approach is implemented is to “push” all the negations in 7" to
the leaves using DeMorgan’s Laws and then define 7" to be the sum-of-products expansion
of the resulting logical expression (e.g., see Goldfeather et al. [29]), i.e., T" is a disjunctive
normal form. Of course, if T' is sufficiently complicated, this could end up exploding the
size of the CSG tree exponentially. In fact, if T' contains exclusive-union nodes (which are
used in VLSI masking [41]), then simply pushing all the negations to the leaves of 7' could
produce an exponential explosion in size. So, in order to be practical, this approach must
be combined with some kind of a “tree-pruning” heuristic based on partially evaluating 7'
while restructuring it (say using bounding boxes) [29]. Rossignac and Voelcker [48] show
how to further exploit the structural locality in 7" by using a notion they call the active zone
of a primitive p, which, intuitively, is the portion of the CSG solid that is affected by p.
For any primitive p, they show how to decompose T' (after all negations have been pushed
to the leaves) into an expression, Z, describing p’s active zone, and an expression, Sy, that
does not depend upon p. Then they distribute p over a (pruned) disjunctive normalization
of Z, and use this and Sy to solve CSG classification problems relative to subsets of p. In
fact, they also show how this can be done implicitly, without actually changing T'. If Z has
a simpler structure than 7', this approach may achieve improvements over a simple-minded
sum-of-products expansion of 7. Of course, if T' contains a lot of exclusive-union nodes,
or if Z is complicated and cannot be significantly pruned, then the size-explosion of this
expansion could still be considerable. Our tree-contraction method does not have any of
these negative side effects.

The reader interested in more information on constructive solid geometry is referred to
[26, 34, 38, 46, 47, 48] for some excellent discussions of this representation and related issues.

In the next section we give our method for restructuring the CSG tree T' and we show
how we can use this restructured tree to speed-up ray shooting in CSG models in Section 3.
We describe how to deal with degeneracies in Section 4, and we conclude in Section 5.



2 CSG Tree Contraction

In this section we show how to convert a possibly unbalanced CSG tree T' into a functionally-
equivalent balanced tree D. To motivate our general approach, let us consider the most trivial
classification problem, namely, point classification.

2.1 Motivating our Approach: Point Classification

In this classification problem one is given a point p and a CSG tree 7', and asked to determine
if p is inside or outside of R, the region defined by T'. As Requicha reviews [46], it is easy
to classify a point p in this way in O(n) time. One begins by determining for each primitive
region P whether p is inside or outside of P, which can be done in O(n) time. Then, for each
leaf v of T', which is associated with a primitive P, one labels v with a 0 or 1, depending on
whether or not p is inside or outside of P (with “0” meaning “outside of P” and “1” meaning
“inside of P”). One then evaluates T' as a boolean tree, after performing the following
transformations of the operations in T7": union—or, intersection—and, subtraction—minus,
and ezclusive-unton—xor. By a simple inductive argument, one can show that an evaluation
of T' determines whether or not p is inside R (with “0” meaning “outside of R” and “1”
meaning “inside of R”). Since T" has m leaves, this evaluation can easily be implemented in
O(m) time by a simple bottom-up procedure.

This view of T" as a boolean tree seems to be the motivation for several of the previous
classification methods, and it is the motivation for our methods. In our applications, however,
this simple approach is not enough to achieve improved running times, for we wish to classify
many different points, not just one. We desire a balanced CSG tree.

2.2 Shrinking T in O(logm) Rounds

So, suppose we are given an m-leaf boolean expression tree 7', such that each leaf of 1" stores
a boolean value (0 or 1) and each internal node is labeled with an operation from the set
{or, and, minus, xor}. Our method for converting 7" might at first seem strange, but by
the end of this section we hope that the usefulness of this method will become apparent.

Our method is based on converting 7" into D in a series of rounds, where we begin with
To = T and we construct each T;;; in round ¢ by removing nodes from T}, and updating
some associated auxiliary structures, where ¢ € {0,1,2,...,[} for some [. In any round ¢ we
are allowed to visit each node in 7; at most a constant number of times. Each node v in T;
stores a pointer to a small tree D,, which produces a value for v. When we visit a node v
in 7; we may leave v unchanged or we may remove v and combine D, with the small tree
associated with one of v’s neighbors in T;. We are not allowed to use any small tree that was
not defined in a previous round. Our goal is to reduce T} to a single node r in as few rounds
as possible, so as to define a single tree D, , which will be functionally equivalent to 7T'.

Our method is based on a modification of the tree contraction technique from parallel
algorithm design [7, 35, 40, 45] for evaluating an arithmetic expression tree whose operations
come from the set {+, x}. In particular, we use a sequential implementation of the rake-



and-compress algorithm of Miller and Reif [40]. Let 7y = T' (as above), so that each internal
node v in Ty is labeled with one of the following operations (we follow each operation by our
notation for it): or (¢ + d), and (¢ * d), minus (¢ — d), or xor (¢ @ d), where ¢ and d are
the values stored in v’s children. For each node v in Ty, we define D, to be the null tree if
v is an internal node, and, if v is a leaf, then we define D, to be a single node storing the
Boolean value associated with v.

Each round consists of two steps, a “rake” step and a “compress” step. In the rake step
we remove each leaf v in the tree and combine its dwart tree with its parent’s dwarf tree
(which may be null). We say that an internal node v is improper if v is not the root and it
has only one child. A node is proper if it not a leaf nor an iémproper internal node. In the
compress step we then remove each improper node v that has an improper child and is an
odd distance from its nearest proper ancestor. We then set the parent pointer for v’s child to
point to v’s parent. Both operations also involve some update and combination operations
to be performed on the D, trees. Let us, therefore, explain the implementations of these two
operations.

2.2.1 The Rake Step

In the rake step we remove all the leaves in T;. So, let v be a leat. There are three cases to
how we update the D,’s.

Case 1: v’s sibling, w, is also a leaf (assume, without loss of generality, that w is a right
child). In this case we may inductively assume that the dwarf trees D, and D,, are available
and they define the (single bit) values associated with v and w, respectively. If we let z
denote v’s parent, then we can define D, by creating a new node r to be the root of D,,
giving r the roots of D, and D, as its children, and defining the operation at r to be the
operation, op, that was stored at z. That is, if b, is the bit returned by D, and b, is the
bit returned by D,,, then the function associated with r is E(op, b,,b,) = b, op b,, which
evaluates to a single bit. We call E the evaluation function. (See Figure 2a.)

Case 2: v’s sibling w is not a leaf. In this case we still remove v, but, following the
approach of Brent [7], we symbolically represent the effect v has on z’s value, where z is v’s
parent. Specifically, we associate two bits, @ and b, with z. These bits are defined so that if
we let = represent the value that will be eventually sent to z from its remaining child w, then
ax + b represents the value that would eventually be at z. Incidentally, this formulation
seems to be new, as the previous methods for tree-contraction require two operations that
form a commutative semi-ring [7, 35, 40, 45], not the four Boolean operations that we
consider. Figure 3 shows how to set the ab labels for z, depending on the bit b associated
with v and the operation op at z. This defines our rake function R(op,b), which evaluates
to an ab pair (i.e., 2 bits). Note that this can be implemented as a simple table look-up in a
table that can be represented with only 20 bits (a look-up that could, in fact, be implemented
in hardware). For example, if z is an and node, and v’s value is 1, then R returns the pair
(a,b) = (1,0). We therefore define D, by creating a new node r to be D, root, giving r
the root of D, as its only child (recall that the old D, was a null tree). We label r with
the function R(op,b), indicating that r’s two-bit value is determined by op and the bit b
returned from D,. (See Figure 2b.)
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Figure 2: The tree contraction operations. The operations for the simple
Case 1 rake rake are illustrated in (a), the operations for the Case 2 rake are
illustrated in (b), and the operations for the simple Case 3 rake are illustrated in
(c). The operations for a compress are illustrated in (d).

z’s operation

v’s value | or and minus; minus; Xor
0 (1,0) (0,0) (0,0) (1,0) (1,0)
1 ‘ (L,1) (1,0) (0,1) (0,0)  (0,1)

Figure 3: An interior rake operation. The table defines the rake function R,
giving the (a,b) values for z when raking one of z’s children, v. We use minus;
(resp., minus;) to denote the case when z’s operation is minus and v is z’s left

(resp., right) child.
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aiby |00 01 10 11
00 00 00 00 00
0r (11 10 01 00
10 {00 01 10 11
11 |11 11 11 11

Figure 4: The Compress look-up table. The (a,b) values for compressing a
node labeled (a1, by) with its child labeled (aq, by). This table defines the compress
function €. Note: this table could also be used to implement the substitution

function S, for S(ab,z) = C(ab, zx).

Case 3. v has no sibling. This case is a consequence of our removing v’s sibling in a
previous round. Thus, we may assume inductively that v’s parent z has a non-null dwarf
tree D, whose root is labeled with a rake function. Fortunately, this is a simple case, for the
value associated with z can be determined by substituting the single bit & returned by v (as
leaves always return single bits) into the equation ax 4 bz, where a and b are the two bits
returned by the rake function associated with the root of D,. This gives us the true value
for z, and defines our substitution function, S(ab, ) = ax + bT, which evaluates to a single
bit. Thus, to define the new D, we create a new node r to be D,’s root, giving r the old
root of D, and the root of D, as its only children. We label r with the function S(ab, ),
where ab is the pair returned by r’s left child and z is the bit returned by r’s right child.
(See Figure 2c.)

2.2.2 The Compress Step

Let T! be the tree resulting from the rake step (we do not maintain the old tree, 7;). Recall
that in the compress step we remove each improper internal node v in 7} that has an improper
child and is an odd distance from its nearest proper ancestor, and set the parent pointer
of v’s child to point to v’s parent. This will give us the tree T;,;. First, of course, we
must identify the improper nodes in 7] that must be compressed, but this is easily done
by a simple tree-traversal (e.g., see [14]). While we are performing this traversal it is an
easy matter to note which improper internal nodes have an improper child and are an odd
distance from their nearest proper ancestor.

When we compress an improper internal node v we may assume inductively that v has
a dwarf tree D, that produces an a1b; pair corresponding to the equation a;x + bz for v.
Moreover, since v’s child, w, is also improper, we may assume that w has a dwarf tree D,,
that produces an ayby pair corresponding to the equation ayz 4 bz for w. But the free
variable, z, in v’s equation denotes the value returned from w. Thus, in cutting out v, if we
want to return the correct value to v’s parent, then we must substitute w’s equation for x in
v’s equation and put the result into a form suitable to become w’s new equation. Specifically,



Figure 5: A CSG tree (a) and its corresponding dwarf CSG tree (b). The
figure gives the dwarf tree for the tree of (a) with the leaves given in the same
left-to-right order.

if v’s equation is a;x + by x, and w’s equation is azx + box, then w’s new equation is
Cll(ag.lf + bgi’) + bl(a2$ + bgi’) (1)

By DeMorgan’s Laws and the fact that boolean 4+ and - form a commutative semi-ring, we
can re-write (1) as

(araz + braz)x + (a1b2 + bIEQ)j + b1agby. (2)

This is not exactly the form we would like, but we can simplify it. Specifically, if the term
biazby is 1, then the terms (aiaz + biaz) and (a1by + b1by) are also 1. Thus, this additive
term is redundant. So we can in fact re-write (2) simply as

(a1a2 + 61&2)17 + (a162 + blzg)i' (3)

This defines our compress function C(aq1by, azby), which evaluates to an ab pair (i.e., 2 bits),
such that a := ajay + bia, and b := a1by + b1by. Note that the above derivation also implies
that the ab representation is closed under the compress operation. We can compute the
value of C' by a simple look-up in the table of Figure 4 (which could be implemented in
hardware). Moreover, this table can be completely represented with only 32 bits, which, on
most computers, can fit in a single word! We define the new dwarf tree D, for w, then, by
creating a new node r as the root, giving r the root of D, and the old root of D, as its
children, and labeling r with the function C(a1b1, azb2), where a1by is the bit pair returned
by r’s left child and a3b, is the bit pair returned by r’s right child. (See Figure 2d.)

We note in passing that our implementation of this compress step is simpler than that
of a straightforward simulation of the Miller and Reif parallel implementation, since our
procedure is strictly sequential. We illustrate the conversion of an unbalanced CSG tree to
a balanced dwart CSG tree in Figure 5.

2.2.3 The resulting Dwarf CSG Tree

When the rake-and-compress procedure completes, and we have reduced 7' to a single node,
r, which was originally the root of T, we let D denote the tree D,. This is the dwarf
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expression tree. Clearly, D is a binary tree, such that, given any collection of boolean values
stored at the leaves of T, if one inputs these values to the corresponding leaves of D, and
one evaluates D in a bottom-up fashion using the table look-up procedures described above,
then the resulting value will be the same as the value of T" given these inputs. In this way,
the tree D has the same power as T' in describing the value of a boolean expression, but, as
we show in the proof of the following theorem, D has height O(logm) and O(m) size.

Theorem 2.1: Given an m-leaf boolean expression tree 1', whose operations come from the
set {or, and, minus, xor}, one can convert T to a functionally-equivalent m-leaf tree D,

such that D has O(m) nodes and height O(log m).

Proof: By a simple inductive argument based upon the construction above it is easy to
show that D is functionally-equivalent to 1. We have only to show that D is a compact
representation of 1”s functionality.

First, note that the height of D is bounded by the number of rounds in the rake-and-
compress computation, since we increment the height of any D, by at most O(1) in any
round. And we may bound the number of rounds by deriving a bound on the number of
nodes of T; we remove in any round :. We claim that at least one fourth of the nodes are
eliminated in any round. To prove this claim consider any four nodes in 7; with consecutive
in-order numbers. If these four nodes do not form a connected subtree in 7T}, then one of
them is a leaf; hence, one will be removed. On the other hand, if these four nodes form a
connected subtree in 7, then they form a 4-node chain and it is either the case that one
of them is a leaf (which will be removed in the rake step) or three of them have only one
child (hence one of these three will be removed in the compress step). Therefore, a fourth
of the nodes in 7} are removed in round 7, as we claimed; hence, the total number of rounds
is O(log m). This, of course, implies that D has height O(logm).

As for the size of D, note that, in the worst case, we could add a new node to D for every
node of T; that survives to be in Tj4;. This implies a worst-case bound on s(m), the size
of D, that can be characterized by the recurrence relation s(m) < s(2m) + m. This implies
that s(m) is O(m) (and it could be exactly m in some cases). O

Thus, we have a worst-case optimal bound on the size and height of the tree D. Moreover,
the constant factors “hiding behind the big-Ohs” are quite small. In fact, we can show the
following.

Theorem 2.2: Given a Boolean expression tree T', as above, the above construction pro-
duces a functionally-equivalent tree D such that h(D) < h(T).

Proof: Our proof is by induction on ¢, the iteration number in our rake-and-compress
procedure. For each node v € Tjyq, let é;(v) denote the height of D, after iteration ¢, and
let 7,(v) denote the height of v in T;41. Initially, é9(v) = 0 for all v € T" and 79(v) denotes
the height of v in 1" = Ty. Also, let h;(v) denote the maximum length in 7" of all v-to-u
paths where u is a leaf in D, after iteration ¢. Intuitively, h;(v) is the height v would have
if its subtree were only the v-to-u paths in T where u is a leaf in D,. Finally, to handle

11



the intermediate stage, let 6!(v) denote the height of D, after the rake step of iteration ¢,
let 7/(v) denote the height of v in 7}, and let hl(v) be analogously defined. Our induction
hypothesis is that for z > 0,

6i(v) + mi(v) < hi(v) + i (v) — 1,

for each v € T}4;.

Before we prove this hypothesis, let us observe why it establishes the theorem. Note that
in the very last iteration, [, the tree 7' is reduced to a single node, the root r of T'. Moreover,
the last operation performed on 77 must be a rake; hence, r had height 1 after the previous
iteration, [ — 1 (i.e., in 7}). Thus, assuming our induction hypothesis is correct, we have

h(D) = &(r) = 6i(r) + n(r) < hi(r) + m—a(r) — 1 = ky(r) = R(T).

Let us therefore prove our induction hypothesis.

The base case (1 = 0). Let us consider the first rake step, case by case. As an intermediate
step to proving our induction hypothesis, we show that after the rake step, for each v € T7,
we have

6i(v) + 7i(v) < hi(v) + Tica(v) — 1, (4)
rl. Suppose both of v’s children v and w were raked in the rake step of iteration ¢ (note

that there are no nodes with only one child at this point). Then é/(v)+7/(v) =140 =
Ri(v) + 7—1(v) — 1, since hi(v) = 1 and 7,_1(v) = 1.

r2. Suppose exactly one of v’s two children was raked in the rake step of iteration z. Let
v denote the raked child. Then 6!(v) = 1 and hi(v) = 1. Moreover, since the lowest
internal node in the subtree rooted at v must have both its children (leaves) raked,
7/(v) < 71i-1(v) — 1. Thus,

Sl(v) + 7i(v) < 14+ 7_4(v) = 1 = hi(v) + 7_1(v) — 1.

r3. Suppose no child of v was raked in iteration :. Then 6/(v) = 0 and hi(v) = 0. As
in the previous case, we have that the lowest internal node in the subtree rooted
at v must have both its children (leaves) raked; hence, 7/(v) < 7,_1(v) — 1. Thus,
ol(v) + 7!(v) < Ri(v) + 7i-1(v) — 1.

Next, let us consider the compress step in iteration z.

cl. Suppose v’s (only) child u is “spliced out” in the compress step of iteration ¢. Then
6;(v) = max{éi(v),6/(u)} + 1 and 7;(v) < 7/(v) — 1 (since we splice out u). There are
therefore two subcases:
cl.1. Suppose 6;(v) = 6;(v)+1. Then h;(v) = hi(v). Combining this with Equation (4),
we get that
S(v)+m(v) < S(v)+1+7(v)—1
<)+ 7o) 1 (o) (o) 1
< hi(v) 4+ Tica(v) — 1,

which establishes the claim for case cl.1.
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c2.

cl.2. Suppose 6;(v) = éi(u) 4+ 1. Then h;(v) = hi(u) + 1 and 7;_1(u) < 7-1(v) — L.
Moreover, since u is v’s only child in 77, 7/(u) = 7/(v) — 1. Combining this with
Equation (4), we get that

8i(v) + 7i(v)

IAIN A
N

I
S
<

which establishes the claim for case cl1.2.

Suppose no child of v is spliced out in the compress step of iteration ¢. Then 6;(v) =
6!(v) and 7;(v) < 7/(v); hence, the claim follows immediately from Equation (4).

This establishes the base case.
So let us now consider the induction step (when ¢ > 1). Assume that our claim is true

after iteration ¢ — 1; let us consider iteration z, beginning with the rake step. As in our base

case, we will show that Equation (4) holds for 7 as an intermediate step.

rl.

r2.

r3.

Suppose all of v’s children were raked in the rake step of iteration 2. Let us fur-
ther restrict our attention to the case when v has two children, u and w, since
the case when v has only one leaf child is similar (actually, it is easier). Then
0!(v) = max{é;—1(u),éi—1(w)} + 1 and 7/(v) = 0 and 7,_1(v) = 1. Moreover, since
i > 1, u and w had height 1 in T;_4, i.e., 7i_2(u) = 7i_2(w) = 1. By induction, then,

bic1(u) = 6;—1(v) + Tic1 < hicq(u) + 7i—2(u) — 1 = hy_qg(u),

and a similar inequality holds for w. Since hi(v) = max{h;—1(u),hi—1(w)} + 1, this
implies that

6i(v) + 7!(v) max{6;_1(u),6;—1(w)} + 1+ 7_1(v) — 1
max{h;_1(u), hi—1(w)} + 14+ 7_1(v) =1

= hi(v) + 1_1(v) — 1.

<
<

Suppose exactly one of v’s two children was raked in the rake step of iteration 2. Let
u denote the raked child. Then 6!(v) = 6,_1(u) + 1 and Al(v) = h;_1(u) 4+ 1. Moreover,
since the lowest internal node in the subtree rooted at v must have both its children
(leaves) raked, 7/(v) < 7,_1(v) — 1. Moreover, since ¢ > 1, u had height 1 in 7;_4, i.e.,
7,—2(u) = 1. By induction, then, 6;,_1(u) < h;_1(u), as in case rl. This, in turn, implies
that

Ol(v) 4+ 7/(v) < bima(u) + 1+ 7ica(v) — 1 < Ri(v) 4+ i1 (v) — 1.

Suppose no child of v was raked in iteration ¢. Then 6/(v) = 0 and hi(v) = 0. As
in the previous case, we have that the lowest internal node in the subtree rooted
at v must have both its children (leaves) raked; hence, 7/(v) < 7,_1(v) — 1. Thus,
ol(v) + 7/(v) < Ri(v) + 7i-1(v) — 1.
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Having established Equation (4) for the general rake step, we can derive our claim for the
compress step using the same arguments used to establish the claim for this step in the base
case, since they only depended upon Equation (4). Thus, é;(v) + 7:(v) < hi(v) 4+ 71 (v) — L.
As mentioned above, this establishes the theorem. O

So, to sum up, it never hurts to construct the dwarf CSG tree, and it often pays consid-
erably to do so. In the section that follows we show how to apply the dwarf CSG tree to
solve two important classification problems.

3 Line Classification and Ray Shooting

The first application we give for the dwarf CSG tree is for line classification, that is, com-
puting all the intersections of a line and a CSG object. We then address an important
special case of this classification problem, where one is simply interested in computing the
first intersection point of a ray with a CSG object, which is the ray shooting problem. Our
method works for both 2- and 3-dimensional objects, and runs in O(nlog n) time, improving
the previous methods, due to Tilove [55, 56] and Getto [28], by almost a linear factor. We
describe our method assuming a 2-dimensional representation, and then show how to extend
it to 3-dimensions. Furthermore, we describe it first assuming the primitives are in general
position, even though this will often not be the case in practice, and we then show how to
allow for “degenerate” configurations in Section 4.

3.1 2-Dimensional Line Classification

Suppose we are given a line I and a CSG tree T', describing a 2-dimensional region R, and
wish to classify L against R. Specifically, we wish to identify all those intervals along L
where L intersects the interior of R. For the sake of simplicity, let us assume that no two
primitives share a common vertex and that the intersection of any two primitive edges is
either null or a single point that is not the vertex of any primitive (we show how to handle
these cases in Section 4). As always, we let n denote the total number of primitive edges,
and let m denote the number of polygonal primitives. Our method is based on the approach
of Roth [49] of “walking” down L, and is as follows.

Step 1. We begin our algorithm by using the method of the previous section to construct
a dwarf CSG tree D for T', where we interpret 7" as a boolean tree using the natural operation
transformations mentioned in Section 2.1. This takes O(m) time.

Step 2. In this step we compute the intersection points of L with the boundaries edges
of each of the primitive regions. With each such point v on L, we store pointers to the leaves
in D corresponding to primitives that we would either enter or exit in crossing v from left
to right (assuming a small neighborhood around v). This step takes O(n) time.

Step 3. In this step we sort the intersection points as they occur along L. This can
easily be done in O(nlogn) time given the information computed in Step 2. We initialize
each leaf of D corresponding to a primitive object to its (default) 0 or 1 value based on
whether or not a point p on L to the left of any of the intersection points is inside or outside
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Figure 6: The traversal for line classification. When we enter the interior of
a polygon P we update the path in D from the leaf, v, associated with P, to the
root.

the primitive. If all the primitives are bounded, then all these leaves should be labeled 0,
since p must necessarily be outside all of the primitives. We then evaluate D by the obvious
bottom-up evaluation procedure, storing the value of each internal node at that node. Note
that some values are ab pairs. This step takes O(nlogn + m) time.

Step 4. In this last step of our classification procedure, we “walk” down L, labeling each
edge as being either inside or outside the region. Each time in our traversal that we enter
or exit a primitive region P we update the leaf node corresponding to P to reflect this, i.e.,
setting the leaf’s value to 0 if we are leaving P or setting it to 1 if we are entering P. This
is not enough, however, for we also must update all the nodes in D whose value changes
as a result of this change. But since D has O(logm) depth, this can be accomplished in
O(log m) time (i.e., we need only visit the O(log m) ancestors of P’s associated leaf node).
(See Figure 6.) For any intersection vertex v on L such that the edge on its left is labeled
differently from the edge on its right, we label v as being a “boundary” point. (See Figure 6.)
When we update D for the last (semi-infinite) edge on L, then we will have correctly labeled
each segment on L (this follows by a simple induction argument).

Thus, we have the following theorem:
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Theorem 3.1: Suppose one is given a planar CSG object R, described by an m-leaf CSG
tree T" whose leaves are associated with primitives that are simple polygons (which could
contain holes) and whose internal nodes are labeled with operations that come from the set
{union, intersection, subtraction, exclusive-union}. Then one can determine all the intersec-
tions of a line L with R in O(nlogn) time, where n is the total number of edges describing
the polygonal primitives, and this running time is optimal in the algebraic computation tree
model.

Proof: We have already established the upper bound. The lower bound is established by a
simple reduction from the set disjointness problem, which has Q(nlogn)-time lower bound
in the algebraic computation tree model [6, 53]. We leave the details to the reader. O

3.2 Extending Our Method to 3-Dimensional Line Classification

If we take a closer look at our method it is easy to see how to extend this approach to higher
dimensional line classification. In particular, we need only change our implementation of
Step 2, the computation of the intersections of L with the primitive regions. If each region
has an O(1) storage description, then this step is still a simple computation that can easily
be done in O(m) time. Otherwise, for each face f we must compute the intersection of L
with f. If we assume the primitive objects, and our ray are in general position, then we
can assume that I and each f lie in different planes and their intersection is either empty
or is a single point, which we can easily determine in O(logn) time, after an O(n)-time
preprocessing step, using standard computational geometry triangulation and point-location
methods (e.g., see [22, 44]). Thus, we can find all the intersections of L with the CSG
primitives in O(n + mlogn) time in the general case, and in O(m) = O(n) time if all the
objects have an O(1) storage description. Since the rest of the algorithm is exactly as in the
2-dimensional case, this gives us the following theorem:

Theorem 3.2: Suppose one is given a 3-dimensional CSG object R, described by an m-leaf
CSG tree T whose leaves are associated with primitives that are simple polyhedra (which
could contain holes) and whose internal nodes are labeled with operations that come from
the set {union, intersection, subtraction, exclusive-union}. One can determine all the inter-
sections of a line L with R in O(nlogn) time, where n is the total number of edges describing
the polyhedral primitives.

3.3 Stream-Lining Our Method for Ray Shooting

For the case of ray-shooting a CSG solid R whose primitives all have an O(1) storage de-
scription (which is usually the case), we can in fact do slightly better than using the method
described above. For, in this application, we do not wish to completely classify a line L with
R, but, instead, we wish to find the first intersection of a ray ¥ with R. In this case, we still
convert the CSG tree T'into a dwarf CSG tree D, and compute all the intersections of ¥ with
the primitives associated with the leaves of T', as before. We then initialize the values for
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the leaves and internal nodes of D using the starting point of 7. This all can easily be done
in O(m) time. We then traverse the ray 7, moving through the list of intersection points as
they occur along 7 until we find an intersection point p on the boundary of R. The point p
is the first point we traverse such that the value associated with the root of D changes. If
we implement the traversal along 7 using a heap (as in the heapsort procedure [14]) to give
us the intersection points as they occur along ', then this takes O(w log m) time, where w is
the number of (spurious) intersections 7 has with primitives of the CSG tree before it hits
the boundary of R. So the total time to trace ', then, is O(m + wlogm). Since it seems
unlikely that a ray 7 would intersect more than O(m/logm) primitive faces before striking
the boundary of R, this procedure should run in linear time in practice.

One could also imagine a situation where one would like to perform a collection of ray
shooting queries on a particular CSG model. In such a case it may be more beneficial to
build a ray shooting data structure [2, 4, 8, 10, 11, 15, 18, 20, 19, 30, 32, 33, 43, 52] for the
boundary edges (and faces) of the primitives and apply the above scheme for each ray in
turn. We leave the details to the interested reader.

In addition, there are a couple of simple heuristics that one can apply to our method,
which should achieve additional improvements in practice. The first is to only traverse up
D, for re-computing internal node values that change as a result of traversing an intersection
point p, as long as the new values are different than the old ones. One can terminate the
traversal as soon as one encounters a new ab value, for some node v, that is the same the
old ab value at v—for none of the values stored in the ancestors of v can change.

The second heuristic one can apply is the well-known bounding box or octree heuristics
(see [50, 51]) to avoid computing intersections between L and faces that are “far away” from
L. This does not improve the worst-case performance of the method, but should improve
the running time in practice. In fact, Facello [25] performed a series of benchmark tests of
our method (optimized with these two heuristics) versus the ray-shooting procedure used
in the CSG software package BRL-CAD developed at the Ballistic Research Laboratory of
the U.S. Army Aberdeen Proving Grounds [21], which is an implementation of the method
of Laidlaw, Trumbore, and Hughes [37] (and is also optimized with these two heuristics).
Facello’s results showed that, for “random” models of 50 or more primitives, our method
out performed the method of BRL-CAD. In fact, even for objects described with only 500
primitives our method achieved a 50% speed-up over the BRL-CAD method. (See [25] for
details.)

Thus, we have established efficient bounds for line classification and ray shooting in 2-d
and 3-d CSG models. Our algorithm descriptions to this point have assumed the objects are
in general position, however, which will often not be the case.

4 Dealing with “Degeneracies”

Many CSG modeling systems will commonly produce a CSG model made up of a collection
of primitives that are not in general position. For example, it is quite common for differ-
ent primitives to share vertices, edges, and/or faces. Powerful and general computational
geometry techniques, such as the simulation of simplicity technique of Edelsbrunner and
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Miicke [23] and the symbolic perturbation technique of Yap [59], have been developed for de-
signing computational geometry algorithms assuming there are no degeneracies. Intuitively,
these methods apply an “infinitesimal” perturbation to the input so that all the objects are
put into general position. Thus, the algorithm designer applying one of these techniques
need not worry about degeneracies at all.

Unfortunately, these techniques are not applicable in the context of Constructive Solid
Geometry. The reason for this is that the CSG operations of intersection, union, subtraction,
and exclusive-union are defined so that they will result in a solid object (or the empty set).
Formally, these operations are defined so that the result of applying an operation to two
objects is the closure of the result of applying that operation to the interiors of the two
objects. Such operations are said to be regularized [26, 28, 34, 38, 46, 48]. Degeneracies
cannot be resolved using an infinitesimal perturbation scheme, since such a perturbation
could create spurious portions of the CSG object. For example, the regularized intersection
of two objects with disjoint interiors and intersecting boundaries is empty, whereas a standard
intersection operation applied to an infinitesimal perturbation of these two objects could be
non-empty. Clearly, if the primitives are in general position, then the regularized operations
are equivalent to the standard operations, however, so we did not concern ourselves with
this issue in our algorithm descriptions above.

If the objects are not in general position, then we must modity our algorithms slightly
to take this into consideration. Fortunately, it is fairly easy to make Steps 2 and 3 robust
using infinitesimal perturbation [23, 59], since they deal with the computation of the ordered
intersections along the line L. Indeed, in the 2-d case we still assume that L intersects no
vertices of the arrangement [22] of the primitive boundary edges, and in the 3-d case we still
assume that L intersects no vertices or edges of the arrangement of the primitive boundary
faces. In Step 4, the “walk” down L, we must now allow for two intervals to share a common
endpoint, and, as mentioned above, we shouldn’t use an infinitesimal perturbation scheme
to deal with such a case. Nevertheless, we can easily handle this case by performing, in
any order, all the updates required by an interval endpoint (i.e., the updates determined by
the primitives we are entering and leaving as we cross that endpoint) and then checking the
value of the root. If the value at the root is the same on both sides of the endpoint, then we
assume we have not crossed the boundary of the CSG model. By checking the value at the
root only when we are guaranteed to be entirely inside or outside each primitive we can be
assured that the value is correct.

5 Conclusion

We have shown how to apply the tree contraction paradigm from parallel algorithm design
to improve the sequential time complexity of line classification and ray shooting problems
for Constructive Solid Geometry (CSG) models. The tree contraction paradigm allowed us
to improve the previous CSG line classification and ray shooting algorithms by near-linear
factors by converting the CSG tree T to a functionally-equivalent balanced tree D that is
roughly the same size as T'. All of our methods can be implemented with simple-to-program
procedures, and still allow one to apply any of the previous heuristics that exploit spatial
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locality.

One natural question to ask is whether our methods can be applied to improve the
complexity of the CSG boundary evaluation problem, where one wishes to construct a rep-
resentation of the boundary of the object described by 7. In joint work with Ghouse and
Bright, we have shown how our approach can be extended to perform 2-d boundary evalu-
ation in parallel [31] using work that is O(r®logn) in the worst case. As for the sequential
complexity, the best known method is that of Tawfik [54], which runs in O(n?) time in the
worst case. It seems very unlikely that one will be able to perform CSG boundary evaluation
in o(n?) time in the worst case, however, FOR it is easy to show that this problem belongs
to the class of so-called “n*-hard” problems in computational geometry [27] (we leave the
details of this reduction to the interested reader).

There are a number of other possible directions for future research, however. One of the
most interesting could be the search for new heuristics for further speeding up CSG evaluation
procedures that use the dwarf CSG tree. We have mentioned some possible heuristics in this
paper, but there are probably many more, especially if one were to examine the algebraic
structure of the dwarf CSG more closely (as Rossignac and Voelcker [48] do for the standard
CSG tree).

Finally, our methods assume one is interested in performing classification tasks against
a static CSG tree representation. Thus, a natural question is whether one can still perform
classification efficiently in an environment where the user may dynamically update the CSG
representation (say, by inserting and deleting primitives and operations). Cohen and Tamas-
sia [12] give an elegant method for dynamically maintaining a CSG representation relative
to a fixed point in space, but we know of no efficient general methods for dynamic CSG tree
maintenance that have good worst-case behavior.
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