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ance of these surfaces to given speci�cations. Unfortu-nately, the algorithms and software needed to quicklyand accurately determine if these sample points con-form to the given speci�cations has not advanced as faras one might have hoped. Thus, we are interested inthe design of e�cient, easy-to-implement algorithms forperforming such metrology primitives, with particularattention focused on the fundamental issues of \
at-ness" and \roundness" [38].1.1 Previous Related Work. Since testing to see ifa set of points conforms to a notion of 
atness or round-ness is essentially a geometric computation, it shouldcome as no surprise that some of the issues involvedin the design of algorithms for testing these conceptshave been previously studied in the computational geo-metry literature. Indeed, the �rst paper in the �rstACM Symposium on Computational Geometry is a pa-per by Houle and Toussaint [19] (which subsequentlyappeared in journal form [20]) on e�cient algorithms forsolving the 
atness problem for points in IR2 and IR3.Interestingly, the speci�c problem they address, whichthey called the width problem, corresponds exactly tothe mathematical notion of \
atness" that is used in thecomputational metrology community (e.g., see [38]). Inthis problem one is given a set S of n points in IRd andasked to �nd a closest pair of parallel hyperplanes inIRd that contain all the points of S on or between them.Houle and Toussaint [19, 20] give exact methods thatrun in O(n logn) time for points in IR2 and in O(n2)time for points in IR3. Their methods are based uponwell-established computational geometry computations,including convex hull construction and line-segment in-tersection (e.g., see [17, 28]), and they can even beimplemented in the rational-RAM computation model,where all arithmetic is performed exactly on rationalnumbers.Several computational geometry researchers [1, 3, 4,5, 9, 21, 30, 35] have studied the width problem further.Since the 2-dimensional algorithm of Houle and Tous-1



2saint is already quite e�cient, most of the subsequent2-dimensional work has been on dynamic approximationmethods [21, 30], whereas further research on static al-gorithms has focused on the 3-dimensional problem. Forexample, the best previous deterministic algorithm fordetermining the width of a set of n points in IR3 is dueto Chazelle et al. [9] and runs in O(n8=5+�) time, for any�xed constant � > 0. The best randomized algorithm forpoints in IR3 is due to Agarwal and Sharir [5] and runs inexpected time that is O(n3=2+�), for any �xed constant� > 0 (see also [1]). All of these sub-quadratic methodsare based on fairly sophisticated techniques, however,such as parametric searching [6, 9, 12, 25], and involvethe computation of lower envelopes of non-linear algeb-raic surfaces in IR4; hence, they cannot be implementedexactly in the rational-RAM model.There has also been some interest in the compu-tational geometry community on various 2-dimensionalproblems related to \roundness" [5, 6, 16, 22, 33, 35, 37].All of these papers involve determining an annulus Athat contains the input set S of n points in the plane.(Recall that an annulus A of radius �A and width0 � !A � 2�A is the region between two concentriccircles of radius �A + !A=2 and �A � !A=2.) Ebaraet al. [16] (see also [22, 35]) study the minimum-widthannulus problem, where one wishes to �nd an annulusA that minimizes the quantity !A (over all annuli inthe plane). They show that the center of a minimum-width annulus containing S must be at a vertex of thefarthest-neighbor or nearest-neighbor Voronoi diagrams(allowing for vertices at in�nity [35]) or at an intersec-tion point between these two diagrams. This, of course,leads to an O(n2)-time algorithm, which can be im-plemented in the rational-RAM model. Agarwal andSharir [5] give a randomized algorithm for solving thisproblem in O(n3=2+�) expected time, for any �xed con-stant � > 0, but their method cannot be implementedin the rational-RAM model, as their method essentiallyamounts to a reduction to a 3-dimensional width com-putation. Alternatively, Agarwal, Sharir, and Toledo [6]observe that one can solve the 2-dimensional minimum-area annulus problem in linear time, via a reduction to�xed-dimensional linear programming1. Shermer andYap [33] consider another notion of roundness, however,which they call relative roundness, where one wishesto �nd the annulus A containing S that minimizes thequantity !A=(�A � !A=2), restricting its center to bein the convex hull of S. They give an O(n2)-time al-gorithm for computing such an annulus A (which maynot be unique, even for points in general position). They1In fact, in linear time, one may �nd the d-dimensional annulusof minimum di�erence in squared radius ((�A + !A=2)2 � (�A �!A=2)2) or, equivalently, minimize the product of the radius andwidth, �A!A, assuming that d is �xed.

also identify an interesting research direction for DT&Malgorithms that allows one to make certain \reasonable"assumptions about the input set. In the case of relativeroundness, for example, they show that one can derivea linear time algorithm for point sets that are angularlyuniformly-distributed about a \near center," \almost"round, and in convex position.1.2 Our Results. Unfortunately, while these previ-ous notions of roundness may capture certain intuitivenotions of what it means for a set of points to be roundor almost-round, none of them solve the roundness prob-lem motivated from DT&M. Recall that in the DT&Mframework one must determine if a given set of pointssatis�es a given speci�cation. It is easy (e.g., see Fig-ure 1) to come up with sample sets S that satisfy agiven speci�cation, but for which a solution to one ofthese previous roundness de�nitions does not determinethis fact.We believe the more natural notion of roundnessmotivated from DT&M is something we call referencedroundness, where one wishes to �nd an annulus A witha given reference radius � that contains S and has� width !A � �, for a given � > 0; or� minimum width, !A, taken over all annuli A with�A = �.We refer to these two problems, respectively, as thedecision and optimization versions of the referencedroundness problem. In either case, our referencedroundness de�nition conforms to the tolerance zonesemantics described by Requicha [29], Srinivasan [36]and Yap [40] for computational metrology.
<ε

1Figure 1: An example of a set with a roundness of 0 (aperfectly 
at line) but a referenced roundness of �.In this paper we give a number of e�cient, easy-to-implement algorithms for solving computational met-rology problems dealing with the 
atness and round-ness primitives. For example, we give simple determ-inistic and randomized methods for solving the refer-enced roundness problem for planar point sets that runin O(n logn) time (with high probability for the ran-domized method). We also study the 3-dimensional(sphericality) version of this problem, as well, givingwhat appears to be the �rst non-trivial solution for a3-dimensional roundness problem (we also give a simple



3approximation algorithm for this problem). Interest-ingly, our (exact) solution for 2-dimensional referencedroundness can also be used to solve the approximationversion of the minimum-width annulus problem, wherethe output width is guaranteed to be within a factor of1 + � of the true width, in time O(n(log n+ 1=�)), withhigh probability, for point sets that satisfy a naturaluniformity assumption.An interesting aspect of the referenced roundnessproblem is that it becomes equivalent to the 
atness(a.k.a., width) problem when r = 1. We show in thiscase, however, that we can signi�cantly improve the run-ning time for determining the width of a set of pointsin IRd, for any �xed d � 1, by considering an approx-imation version of this problem. In particular, we showhow to compute a width that is guaranteed to be withina 1+� factor of the true width in time O(�d�1n), where� = �=(2 � arctanp(2�+ �2)=(d� 1)). We achieve thisresult by several reductions to �xed-dimensional linearprogramming, generalizing a 2-dimensional approach ofJanardan [21].It may not be immediately apparent, but toleran-cing metrology actually lends itself quite naturally toapproximation algorithms, in a fashion analogous to theadaptive-precision approach of exact arithmetic compu-tations [18, 34, 39]. For example, if a sample of a ma-chine part with a tolerance of �1mm were tested usingan approximation algorithm with an error of �0:1mm, areported tolerance t with t < :9mm would, even at max-imum possible error, still guarantee that the sample fallswithin the speci�ed tolerance, and a reported tolerancewith t > 1:1mm would, at maximum error, guaranteethat the sample fails tolerance. On the other hand,if a sample has a tolerance that is \too close to call,"which should be a fairly rare event if the manufacturingprocess is correctly calibrated, then we can resort to a(slow) exact algorithm (e.g., [20]).We have implemented our approximation approachto the referenced roundness and width problems andprovide the results of benchmarking tests, whichgive empirical evidence to the e�ciency and ease-of-implementation of our methods. In addition, we de-scribe several heuristics for improving the running timeof our methods in practice, and we give empirical evid-ence that these heuristics do indeed improve runningtimes.In the sections that follow we outline the main ideasof our results.2 Exact and Approximate ReferencedRoundnessIn this section we give e�cient algorithms for thereferenced roundness problem in the plane. The �rstalgorithm is deterministic and uses a simple version of

parametric searching [6, 9, 12, 25], running in O(n logn)time; the second one, which is somewhat simpler, israndomized and achieves a running time of O(n logn)with high probability. The deterministic algorithmgeneralizes to an algorithm for solving the referencedroundness problem in 3-dimensions in near-quadratictime. Using the referenced roundness algorithm, weobtain an approximation algorithm for the minimumwidth annulus problem, which, under certain reasonableuniformity assumptions on the input, determines theminimum width to within a factor 1 + � and runs intime O(1=�) times the time for the referenced roundnessalgorithm. We also describe a simple approximationalgorithm for the referenced roundness problem in a�xed dimension d with absolute error � and runningtime O(n=�d), which can be improved to O(n logn +(1=�2) logn) in the plane.2.1 Preliminaries. Let S be a set of n points in IRd;we will be interested in d = 2; 3 although the de�nitionsand some of the results extend to higher dimensions.Balls, annulus, intersection and union of balls.For a point p in the plane and a real number r � 0,let br(p) denote the ball of radius r centered at p.Let Ar;w(p) be the annulus br+w=2(p)� int(br�w=2(p)).We say that Ar;w has radius r and width w. LetIr = Ir(S) = Tp2S br(p) denote the intersection ofthe r-radius balls centered at points in S and let Ur =Ur(S) = Sp2S br(p) denote the union of this set ofballs. Also, let Xr;w = Xr;w(S) = Tp2S Ar;w(p). Notethat Xr;w = Ir+w=2 � int(Ur�w=2). For �xed r, we callXw = Xr;w the w-feasible region, because q 2 Xr;w ifand only if S � Ar;w(q).Nearest and furthest point Voronoi diagrams.The nearest point Voronoi diagram Vn = Vn(S) of Sis the complex of closed convex cells consisting of thed-dimensional cells V np (S) = fq 2 IRd : kq � pk � kq �p0k; p0 2 Sg and their intersections V nS0(S) = Tp2S0 V np ,for S0 � S. The 0- and 1-cells are called vertices andedges. The furthest point Voronoi diagram Vf = Vf (S)is de�ned similarly with the d-cells V fp (S) = fq 2 IRd :kq � pk � kq � p0k; p0 2 Sg (which are non empty i�p is on the boundary of the convex hull of S). BothVoronoi diagrams have size O(ndd=2e) [24] (O(n) ford = 2 and O(n2) for d = 3) and can be computed intime O(n logn + ndd=2e) [8] (O(n logn) for d = 2 andO(n2) for d = 3). The 1-skeleton of Vn (resp. Vf ) is thesubcomplex consisting of the 0- and 1-cells. For furtherinformation see, e.g., [17, 28]. The carrier cn(q) of apoint q in Vn is the cell in Vn of smallest dimensionalitythat contains q (we will use the concept of carrier forobjects other than points, for example, the carrier ofan edge). cn(q) is V nT where T is the set of sites in S



4nearest to q. Let n(q) be the corresponding distanceto a nearest site. Then q is in the boundary of Un(q).Similarly, cf (q) is the carrier of q in Vf , f(q) is thedistance to a furthest site, and q is in the boundary ofIf(q).Constructing the !-feasible region. Given a pointset S, a radius �0 and a width !, we compute the !-feasible region X! = X�0;!(S).Lemma 2.1. Given Vn and Vf , X! can be constructedin time O(n) for d = 2 and in time O(n2) for d = 3.Proof. Let us consider �rst the case d = 2. Let R =�0 + !=2 and r = �0 � !=2. Let P = bd(IR) andQ = bd(Ur). Assuming Vn and Vf are known, P and Qcan be computed in time O(n). More precisely, in timeO(n), we can determine P within each cell of Vf , andQ within each cell of Vn. Next, taking advantage of thefact that IR is convex, we compute the intersection ofP with the cells of Vn in time O(n) by walking alongP and the portions outside IR of the cells of Vn thatintersect P . See Figure 2.
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PFigure 2: Intersecting P and Vn.Next, the intersection of P and Q is obtained bywalking along P on Vn. As each cell c is visited, theintersection with Q inside c is computed; for this, thefollowing information is needed: the relative order ofthe intersections of P and Q with the boundary of cand the relative position of the vertices and edges of Pin c respect to the ball in c. Finally, X! is computed:If the intersection of P and Q is empty then the resultdepends on whether P is contained in Ur and on whethersome components of Q are contained in IR. If theirintersection is not empty, then the boundary of X!consists of a portion of P and the portions of Q insideP . The overall time used is O(n).Each of the steps can be extended to the case d = 3.In this case the size of Vn and Vf is O(n2). As before,we �rst compute the intersection of P with Vf and of Qwith Vn, but now in time O(n2) (even though the sizeof P is just O(n)). Note that the size of the intersectionof P with Vn is O(n2). The same bound is true then forthe intersection of P and Q, and so for the boundaryof X!. Thus, taking advantage of the fact that IR isconvex, we compute the intersection of P with the cells

of Vn and the intersection of P and Q in time O(n2).Finally, X! is obtained using overall time O(n2). Thedetails are omitted here.Thus, the decision version of the referenced round-ness problem can be solved in time O(n) for d = 2 andin time O(n2) for d = 3, given Vn and Vf .2.2 Algorithms for optimal referenced round-ness in the plane. Let us now consider the optim-ization version of referenced roundness, which is to de-termine, given a point set S and a radius �0 � 0, theminimum width !0 � 0 such that for some point x,S � A�0;!0(x). Note that this is equivalent to determ-ining the minimum !0 so that X�0;!0 6= ;.As in the previous subsection, since the radius �0remains �xed, we drop �0 from the notation. Letus assume that for some x, S � A2�0(x), and henceX�0 6= ; (this can be determined quickly given Vn andVf ). ConsiderX! as ! decreases from ! = 2�0 to ! = 0.X! decreases monotonically, that is, if x 62 X!0 thenx 62 X! for ! < !0. This is because I�0+!=2 decreasesmonotonically, while U�0�!=2 increases monotonically.This elementary observation is essential for being ableto obtain a fast algorithm because it allows the use ofa binary search to determine !0. Speci�cally, it impliesthat for !0 � ! � 2�0, X! 6= ; while for ! < !0,X! = ;.Deterministic algorithm. Using the technique ofparametric searching and a parallel version of the al-gorithm of the previous section for constructing an !-feasible region, we can obtain an algorithm for the op-timization version of the referenced roundness problemthat runs in time O(n logn).Theorem 2.1. The optimal referenced roundness prob-lem in the plane can be solved in time O(n logn) determ-inistically.Proof. In the construction of the feasible region, allcomparisons involving ! can be parallelized into O(1)batches of O(n) comparisons or O(n) independent bin-ary searches. Other parts of the algorithm not involving! are performed sequentially. We ellaborate on thisclaim: To compute P = bd(IR), �rst determine in par-allel for each edge of Vf whether it intersects P (thisrequires O(1) comparisons involving !), and then con-struct P sequentially; to obtain the intersection of Pand Vn, for each vertex of Vn in parallel, using a binarysearch (point location) determine whether it lies insideor outside IR, and for each edge of Vn in parallel, using abinary search determine whether it intersects P ; �nally,to compute the intersection of P and Q, for each edgeof Vn in parallel, determine the relative position of itsintersections with P and Q, for each vertex of P in par-allel determine whether it lies inside or outside the ball



5in its carrier in Vn containing it, and for each segment ofedge of P in parallel determine whether it intersects theboundary of the ball in its carrier in Vn. The algorithmuses O(n logn) work. Then, using parametric search-ing, with this algorithm and the sequential O(n) timeoracle from the previous subsection, plus Cole's speed-ing up trick [12], we derive an optimization algorithmusing overall time O(n logn).Randomized algorithm. Even though the previousmethod uses a simple version of parametric search, weare aiming for an algorithm that combines the maximumachievable e�ciency and simplicity. So we describean even simpler randomized algorithm for referencedroundness in the plane.For any edge e in Vn (resp. Vf ) its center isthe intersection of e with the line segment joining thesites determining e (if nonempty). If we introducethese centers as additional vertices, hence splitting someedges into two new edges, then we have the followingobservation (actually, in Vf only one center may beneeded, the center of the minimum enclosing disk): n(q)is monotone along edges in Vn; f(q) is monotone alongedges in Vf . Let !n(x) = 2(�0 � n(x))) and !f (x) =2(f(x) � �0). !n and !f are monotone on edges of Vnand Vf respectively. Let !(x) = minf!n(x); !f (x)g.Note that x disappears from X! at ! = !(x).Lemma 2.2. !0 is !(x) for some point x on the 1-skeleton of Vn or Vf .Figure 3 shows X�0;! just before vanishing alongedges in Vn and Vf . Large circles are shown dashed andsmall circles are shown continuous.
A BFigure 3: X�0;! vanishing along edges in nearest andfurthest Voronoi diagrams.For edges en and ef in Vn and Vf respectively, letv(en; ef ) be their intersection if it exists. Let I bethe set of those intersection points v(en; ef ), and letI 0 consist of I together with the vertices of Vn and Vfand the centers of their edges. An elementary segmentis a segment e0 of an edge en or ef in Vn or Vf , whoseendpoints are in I 0 and contains no point in I 0 in itsinterior. For an elementary segment e0, the minimum !

so that e0 \X! 6= ;, denoted !(e0), can be computed inconstant time (assuming the carrier in the other Voronoidiagram is known). By the previous lemma, to obtain!0, it is su�cient to compute !(x) for x 2 I 0, and !(e0)for all elementary edge pieces. Since in the worst casethere may be �(n2) of them, we need a way to reducethe number of them that need to be considered. Theway we proceed is inspired by randomized algorithmsfor the slope selection problem [13, 23, 32].First, we establish a linear ordering<l on the pointsin I 0 as follows: v <l v0 i� !(v) < !(v0) or (to breakmatches) !(v) = !(v0) and v <a v0 where <a is someother arbitrary linear ordering. The key point of theapproach is the following: For each k > 0, there areconstants C;C 0 > 0 such that if we choose at randomK = Cn points v1 <l � � � <l vK from I then withprobability at least 1 � 1=nk, each interval vi; vi+1contains at most C 0n logn points in I. In particular,there are O(n logn) points v in I with v <l v1; that is,with !(v) < !(v1). Let !� = !(v1). It remains to �ndthe portions of the 1-skeletons of Vn and Vf containedin X!� and from there the points in I 0 contained inX!� , and deal with all the corresponding elementarysegments directly. Using simple techniques, the steps ofthe algorithm described can be implemented to run inO(n logn) time, with high probability, which establishesthe following theorem:Theorem 2.2. The optimal referenced roundness prob-lem can be solved in time O(n logn), with high probab-ility.2.3 Roundness in 3-d space. The roundnessproblem in 3-dimensional space is also of practicalimportance, but has not received much attention. Inthis case the ideal shape is a sphere or a spherical patch.Our referenced roundness concept and the approachto computing it extend to the 3-dimensional case. Asalready pointed out, the feasible region has complexityO(n2) and can be computed from the Voronoi diagramsin time O(n2); then using parametric searching wederive an e�cient algorithm for referenced sphericality.Theorem 2.3. The referenced roundness prob-lem in 3-dimensional space can be solved in timeO(n2polylog(n)).2.4 Approximation algorithm for referencedroundness. We develop a simple approximation al-gorithm for the referenced roundness problem in any�xed dimension d � 2. We show that in O(�dn) timewe can compute !0 such that !0�! � � where � = pd=�and !0 and ! are the approximate and true widths, re-spectively. The algorithm is quite straightforward, itworks by dividing a box bounding the points into a uni-



6form grid of size �d, but the dependency on � is ex-tremely high. To alleviate this burden, we show thatvarious heuristics can signi�cantly reduce the � valuein practice, including the use of approximate nearest-and farthest-neighbor searching [2, 7]. In the full ver-sion we establish the following.Theorem 2.4. The referenced roundness of a point setS in IRd, for �xed d � 2, can be approximated in O(�dn)time such that !0 � ! � pd=�, where !0 and ! are theapproximate and true widths respectively.In our section on implementation we explore someheuristics that should reduce the �d factor signi�cantlyin practice.2.5 Approximation algorithms for min-widthannulus. Recall the minimum-width annulus problem,where one is given a point set S in the plane, andasked to determine the minimum width !m � 0 suchthat for some radius �m and some point xm, S �A�m;!m(xm). As mentioned earlier, the min-widthannulus algorithms with running times that are o(n2) [5,6] do not seem to be of practical value in the nearfuture. Thus, we consider approximation algorithms,in the spirit of the approach of Shermer and Yap [33],under reasonable assumptions about the input data,which are realistic in the sense that they can be expectedfrom data in tolerancing metrology or enforced in themeasurement process. Also, an absolute error does notseem acceptable since the width is likely to be verysmall. We introduce a reasonable restriction on theinput data that allows to obtain a relative error: Wesay that S is �-uniform if a minimum width annulusA�m;!m(xm) is so that any sector of angle � centered atxm intersects S.Our approach is quite simple: First determinean approximation �e of �m such that j�e � �mj �C!m=2, and an approximation !e of !m such that!m � !e � D!m, for some constants C;D. Thenrepeat the referenced roundness algorithm R = E(1=�)times with values of � uniformly distributed between�e�C!e=2 and �e+C!e=2, with E = 2CD. Note thatif j�e��mj � � then j!(�e)=2�!m=2j � �. So, it onlyremains to describe how to obtain �e and !e.Let z(S) be the center of the minimum enclosingdisk of S. Then let �e and !e be the radius and thewidth of the minimum width annulus centered at z. If!m=2�m > 1=5 then the conditions required for �e and!e are trivially satis�ed: j�e � �mj � �m < 5!m=2,and !e=2 � �m < 5!m=2. So assume !m=2�m � 1=5.Figure 4 shows a min-width annulus and the minimumenclosing disk (in the extreme case that its radius isequal to the exterior radius of the min-width annulus).If the centers are displaced by k!m=2 with k � 2
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w/2Figure 4: Approximation by minimum enclosing disk.then the angle � shown in the �gure satis�escos � = 2k � !m=2�m � !m=2 �k2 � 2k� :Take k � 4. Then cos � � 1=2 and hence � � �=6.Assuming that S is (�=3)-uniform, then k � 4 andconsequently j�e � �mj � 5!m=2 and !e=2 � 5!m=2.The concept of uniformity can be extended to d = 3(using cones), and a similar analysis applies. Thus, wehave:Theorem 2.5. There is an approximation algorithmfor the min-width annulus problem on �-uniform sets ofpoints, with appropriate �, that outputs a width within afactor 1+ � of optimal in time O((1=�)n logn) for d = 2and in time O((1=�)n2polylog(n)) for d = 3.In the plane, using the randomized algorithm weobtain a somewhat simpler randomized algorithm withthe same running time with high probability. Thesame approach estimates the center of a min-widthannulus within distance O(!m). Therefore, using thegrid approach described above, we obtain the followingalternative algorithms:Theorem 2.6. There is an approximation algorithmfor the min-width annulus problem on �-uniform sets ofpoints, with appropriate �, that outputs a width withina factor 1 + � of optimal in time O(n=�d). For d = 2,this can be improved to O(n logn+ (1=�2) logn).3 Approximating the WidthRecall that in the width problem one is given a setS of n points in IRd and asked to �nd a closest pairof hyperplanes that contain all the points of S on orbetween them. Janardan [21] describes an algorithmthat e�ciently maintains the approximate width of adynamic 2-dimensional point-set in O(� log2 n) time.In this section we extend his approach to d-dimensionsand show how a carefully formulated subproblem isequivalent to a linear program with O(n) constraintsand d + 1 variables, which, for d � 2 being a �xedconstant, is a problem that can be solved in O(n)time [10, 11, 15, 26, 27, 31].



73.1 Skewed distances between hyperplanes. LetA and B be two parallel hyperplanes in d-space de�nedby the respective equations (a0; a1; : : : ; ad�2;�1)x +ad�1 = 0 and (b0; b1; : : : ; bd�2;�1)x + bd�1 = 0.Since the two planes are parallel, we know that theirnormals are parallel, which implies that a0 = b0; a1 =b1; : : : ; ad�2 = bd�2.Recall that the distance, �, between these two hy-perplanes is jad�1 � bd�1j=pN �N , where the normalN to the hyperplanes is N = (a0; a1; : : : ; ad�2;�1).We de�ne the skewed distance, F(�), betweentwo hyperplanes as F(�) = jad�1 � bd�1j =�qa20 + a21 + � � �+ a2d�2 + 1, which can be signi�cantlylarger than � for large values of a0; a1; : : : ; or ad�2.However, if the normal to the hyperplanes is small, wecan see that F(�) � �. We will exploit this propertyshortly.3.2 The Skewed Width Problem. Before we ap-proximate the minimum width problem, let us considerthe simpler problem of �nding the pair of hyperplanescontaining S with minimum skewed distance, i.e. theskewed width problem.In order to solve this simpler width problem, wemust �rst �nd at least two parallel hyperplanes con-taining all of the points between them. It is known thata hyperplane A (resp. B) is above (below) all of thepoints in S if and only if 8p 2 S; p lies in the half-spacede�ned as A � 0 (resp. B � 0).Thus, our search space is the set P of all pairs ofparallel planes (A;B) such that A (resp. B) is above(below) all points in S. Notice also that the boundaryof P corresponds to the convex hull of S.We now proceed to �nd the pair (A;B) 2 P withthe minimum skewed distance. From the above, we cansee that this optimization problem is simply a linearprogram of the form:Minimizea� bsuch that8p 2 S;with p = (p0; p1; : : : ; pd�1)(a0; a1; : : : ; ad�2;�1) � (p0; : : : ; pd�1) + a � 0(a0; a1; : : : ; ad�2;�1) � (p0; : : : ; pd�1) + b � 0This is a linear program with 2n constraints andd + 1 variables, which can be solved in O(n) timefor �xed d. However, as noted by Janardan [21], theskewed width solution does not necessarily yield anaccurate approximation to the width, because F(�) canbe signi�cantly larger than �, as noted in Section 3.1.3.3 Approximating the Width. In the plane toyield a tightly bounded approximation, we solve theskewed width problem in � di�erent coordinate systemsCi = (Xi; Yi), for some � > 1, where Xi and Yi are

the respective x- and y-axes. X0 is horizontal (originalx-axis) and Xi(i = 1; : : : ; � � 1) makes an angle of�� with Xi�1. In one of the Ci, the optimal solutionhas parallel lines with slope m such that jmj � tan �2� .Intuitively, one can see that the optimal lines must lieat an angle which is in the range (��2� ; �2� ) for somecoordinate system.This idea can easily be extended to the d-dimensional case by having �d�1 coordinate systemsCi0:::id�2 = (X0; : : : ; Xd�1)i0:::id�2 for 0 � io : : : id�2 �� where the plane formed by the axes Xj and Xd�1(j =0; : : : ; d � 2) is rotated within the plane by an angle�ij� . Now the optimal pair of hyperplanes with normalN = (m0; : : : ;md�2;�1) must have all jmj j � tan �2�for some coordinate system Ci0:::id�2 , denoted by C! .Recall, from Section 3.1, that F(�) = �pN �N . LetF(�i0:::id�2) for (0 � i0 : : : id�2 � �) be the minimumskewed width in the coordinate system Ci0:::id�2 . Spe-ci�cally, let F(�!) be the minimum skewed width foundin C!. LetW 0 be the minimum over all �i0:::id�2 , and letW be the true optimal width over the set S. It followsthat W 0 � �! � F(�!) � F(W ) =WpN �N� Wq1 + (d� 1) tan2 �2�Letting �2� = arctanq 2�+�2d�1 yields W 0 �W (1 + �).Since the linear program in each coordinate systemcan be constructed in O(n) time and solved in O(n)time for �xed d, the total running time of our algorithmis O(�d�1n) time.Theorem 3.1. Given a set S of n points in IRd, fora �xed d � 2, one can compute in O(n) time anapproximation W 0 to the width of S such that W 0 �(1 + �)W , where W is the width of S, for any �xedconstant � > 0.4 Implementation and ExperimentationBoth the referenced roundness and minimum widthapproximation algorithms, although running in lineartime, depend heavily on the number of grids or coordin-ate systems, respectively, hereafter referred to as par-titions, tested. A natural question then is, \Can wee�ectively reduce the number of partitions tested?"4.1 Implemented heuristics for the approxim-ate width problem. In practice, for the width prob-lem, the answer is probably \yes," since most widthcomputations will be performed on point sets that areknown to be reasonably 
at. Theoretically, of course,one can construct almost degenerate sets of pointsnearly uniformly distributed on a unit hypersphere, forwhich the answer to the above question would be \no."



8 Therefore, we implemented and tested our approx-imate width algorithm on example point sets (particu-larly in IR3) that were known to be \fairly 
at." Withthis application in mind, we analysed some heuristicsfor reducing the number of tested coordinate systemsneeded to produce an accurate approximate solution tothe width problem. Even though the following heur-istics exploit this 
atness property, they remain robustenough to handle sets of other shapes.To construct our fairly 
at surfaces of varying ori-entation, size, and width, we selected random points ona surface of random size and orientation in space andperturbed them slightly away from the surface at ran-dom amounts. The graph in Figure 5 shows two values:the maximum error ratio between the approximate andtrue widths (a straightforward formula) and the aver-age ratio between the approximate and true widths asreported in our testings for various values of �. As canbe seen from the graph, regardless of the theoretical er-ror rate, for fairly 
at surfaces, the algorithm tends toperform extremely well in approximating the width.
1

1.002

1.004

1.006

1.008

1.01

5 10 15 20 25 30 35 40

er
ro

r 
ra

tio

alpha

Error Ratio to Alpha Plot

Theoretical Error
Actual Error

Figure 5: Comparing the theoretical error bound to actualerror bounds.The bottleneck in this approximation algorithm isthe heavy dependence of the running time on �d�1. Ifwe can, in any way, prevent several possibly needlesspartitions from running the linear program, we drastic-ally reduce the running time, allowing even better ap-proximations in equal amounts of time. We begin witha simple observation.Lemma 4.1. Let �i and Ni be, respectively, the minimaldistance between and normal to the two supportinghyperplanes found by our linear program. For any twoparallel hyperplanes with normal Nj and distance �j , ifNj �Nj � Ni �Ni, then �i � �j .Proof. Since � = F(�)=pN �N , F(�i) � F(�j), andNi �Ni � Nj �Nj � 1, it follows that �i � �j .Before we can remove all possible planes ful�lling

this property, we need one more observation. Let NiPbe the normal for any pair of parallel hyperplanes, Aiand Bi, in the partition P , and let P be the set of allpartitions tested. We de�ne the scope of a partitionP to be the set SP of all pairs (Ai;Bi) having normalNi such that Ni � Ni � NiQ � NiQ ;8Q 2 P . In otherwords, the scope contains all hyperplanes whose normalis minimized in that particular partition.Because the normal is minimized, the distanceF(�i)between the hyperplanes Ai and Bi is minimized in thepartition P where (Ai;Bi) 2 SP . If we reject an entireset SP in another partition Q, we can ignore partitionP because all remaining planes must be elements ofthe scopes of other partitions. Consequently, we mayeliminate, after only a few linear program calls, severalunlikely candidate partitions.In order to maximize the elimination process, wenow only need to determine the evaluation order ofthe partitions. We implemented three slightly di�erentheuristics. The �rst of our heuristics simply doeseach partition in lexicographic order. The second andthird implementations \bounce" around the partitionset in, respectively, a random order and a prede�nedmanner, trying the middle partition �rst, subdividing,and recursing on each half. The graph in Figure 6 showsthe number of partitions tested for a random sample offairly 
at hyperplanes in the standard mode (�d�1) andin each of these three heuristics.
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Figure 6: Comparing the partition-reduction heuristics tothe standard mode. Each point on the graph is an averageof four random orientations of an almost-
at set of 50,000points in IR3.As one can see, these heuristics provide a signi�cantdecrease in the number of partitions tested, yielding amuch improved running time over the original methodfor higher values of �. Thus, utilization of the aboveheuristics can signi�cantly improve performance.4.2 Implemented heuristics for the referencedroundness problem. Previously, we showed that the



9referenced roundness could be approximated in lineartime with a heavy dependency on �. To cut thedependence upon � for several practical scenarios, weuse the following observation.Lemma 4.2. Let P be any subdivision of a bounding boxfor a set S. Let g be a grid of P with a referencedroundness �g at its center and an error bound of �gequivalent to the distance from its center to farthestcorner, and let �0 be the referenced roundness for anypoint in P . If �g � �g � �0, then �h � �0 for any pointh 2 g.Proof. By the de�nitions of referenced roundness andnearest and farthest neighbors, �h 2 [�g+ �g ; �g� �g].If we recursively subdivide the grids starting from asingle grid, we may eliminate any grid with �g� �g � �0where �0 is the current minimum observed referencedroundness. In practice, this should signi�cantly reducethe number of grid points tested. Again, the main di�-culty becomes determining the order in which the gridsare searched. We implemented two search methods.The �rst is a depth-�rst search that continuously evalu-ates and subdivides one particular grid completely un-til the maximum number of divisions is attained beforeproceeding to the next grid. The second is a breadth-�rst search that evaluates all grids at a particular di-vision level and subdivides only valid grids before ree-valuating.
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10[3] P. K. Agarwal and M. Sharir, O�-line dynamicmaintenance of the width of a planar point set, Comput.Geom. Theory Appl., 1 (1991), pp. 65{78.[4] , Planar geometric location problems and main-taining the width of a planar set, Algorithmica, 11(1994), pp. 185{195.[5] , E�cient randomized algorithms for some geo-metric optimization problems, in Proc. 11th Annu.ACM Sympos. Comput. Geom., 1995, pp. 326{335.[6] P. K. Agarwal, M. Sharir, and S. Toledo, Ap-plications of parametric searching in geometric optim-ization, J. Algorithms, 17 (1994), pp. 292{318.[7] S. Arya, D. M. Mount, N. S. Netanyahu,R. Silverman, and A. Wu, An optimal algorithmfor approximate nearest neighbor searching, in Proc.5th ACM-SIAM Sympos. Discrete Algorithms, 1994,pp. 573{582.[8] B. Chazelle, An optimal convex hull algorithm in any�xed dimension, Discrete Comput. Geom., 10 (1993),pp. 377{409.[9] B. Chazelle, H. Edelsbrunner, L. Guibas, andM. Sharir, Diameter, width, closest line pair andparametric searching, Discrete Comput. Geom., 10(1993), pp. 183{196.[10] K. L. Clarkson, Linear programming in O(n3d2 )time, Inform. Process. Lett., 22 (1986), pp. 21{24.[11] , A Las Vegas algorithm for linear programmingwhen the dimension is small, in Proc. 29th Annu. IEEESympos. Found. Comput. Sci., 1988, pp. 452{456.[12] R. Cole, Slowing down sorting networks to obtainfaster sorting algorithms, J. ACM, 34 (1987), pp. 200{208.[13] M. B. Dillencourt, D. M. Mount, and N. S. Net-anyahu, A randomized algorithm for slope selection,Internat. J. Comput. Geom. Appl., 2 (1992), pp. 1{27.[14] W. P. Dong, E. Mainsah, P. F. Sullivan, andK. F. Stout, Instruments and measurement tech-niques of 3-dimensional surface topography, in Three-Dimensional Surface Topography: Measurement, Inter-pretation and Applications, K. F. Stout, ed., PentonPress, Bristol, Penn., 1994.[15] M. E. Dyer, On a multidimensional search techniqueand its application to the Euclidean one-center problem,SIAM J. Comput., 15 (1986), pp. 725{738.[16] H. Ebara, N. Fukuyama, H. Nakano, and Y. Na-kanishi, Roundness algorithms using the Voronoi dia-grams, in Abstracts 1st Canad. Conf. Comput. Geom.,1989, p. 41.[17] H. Edelsbrunner, Algorithms in Combinatorial Geo-metry, vol. 10 of EATCS Monographs on TheoreticalComputer Science, Springer-Verlag, Heidelberg, WestGermany, 1987.[18] S. Fortune and C. J. Van Wyk, E�cient exactarithmetic for computational geometry, in Proc. 9thAnnu. ACM Sympos. Comput. Geom., 1993, pp. 163{172.[19] M. E. Houle and G. T. Toussaint, Computingthe width of a set, in Proc. 1st Annu. ACM Sympos.Comput. Geom., 1985, pp. 1{7.[20] , Computing the width of a set, IEEE Trans.Pattern Anal. Mach. Intell., PAMI-10 (1988), pp. 761{765.[21] R. Janardan, On maintaining the width and diameterof a planar point-set online, Internat. J. Comput.

Geom. Appl., 3 (1993), pp. 331{344.[22] V. B. Le and D. T. Lee, Out-of-roundness problemrevisited, IEEE Trans. Pattern Anal. Mach. Intell.,PAMI-13 (1991), pp. 217{223.[23] J. Matou�sek, Randomized optimal algorithm for slopeselection, Inform. Process. Lett., 39 (1991), pp. 183{187.[24] P. McMullen, The maximal number of faces of aconvex polytope, Mathematica, 17 (1970), pp. 179{184.[25] N. Megiddo, Applying parallel computation algorithmsin the design of serial algorithms, J. ACM, 30 (1983),pp. 852{865.[26] , Linear-time algorithms for linear programmingin R3 and related problems, SIAM J. Comput., 12(1983), pp. 759{776.[27] , Linear programming in linear time when thedimension is �xed, J. ACM, 31 (1984), pp. 114{127.[28] F. P. Preparata and M. I. Shamos, Computa-tional Geometry: An Introduction, Springer-Verlag,New York, NY, 1985.[29] A. A. G. Requicha, Mathematical meaning and com-putational representation of tolerance speci�cations, inProc. 1993 Int. Forum on Dimensional Tolerancing andMetrology, 1993, pp. 61{68.[30] G. Rote, C. Schwarz, and J. Snoeyink, Maintain-ing the approximate width of a set of points in the plane,in Proc. 5th Canad. Conf. Comput. Geom., Waterloo,Canada, 1993, pp. 258{263.[31] R. Seidel, Small-dimensional linear programming andconvex hulls made easy, Discrete Comput. Geom., 6(1991), pp. 423{434.[32] L. Shafer and W. Steiger, Randomizing op-timal geometric algorithms, Technical Report 94-22,DIMACS, 1995.[33] T. C. Shermer and C. K. Yap, Probing for near-centers and estimating relative roundness, in Proc.ASME Workshop on Tolerancing and Metrology, 1995.[34] J. R. Shewchuk, Robust adaptive 
oating-point geo-metric predicates, in Proc. 12th Annu. ACM Sympos.Comput. Geom., 1996, pp. 141{150.[35] M. Smid and R. Janardan, On the width and round-ness of a set of points in the plane, in Proc. 7th Canad.Conf. Comput. Geom., 1995, pp. 193{198.[36] V. Srinivasan, Role of sweeps in tolerance semantics,in Proc. 1993 Int. Forum on Dimensional Tolerancingand Metrology, 1993, pp. 69{78.[37] K. Swanson, D. T. Lee, and V. L. Wu, An optimalalgorithm for roundness determination on convex poly-gons, Computational Geometry: Theory and Applica-tions, 5 (1995), pp. 225{235.[38] R. K. Walker and V. Srinivasan, Creation and evol-ution of the ASME Y14.5.1M standard, in Proc. 1993Int. Forum on Dimensional Tolerancing and Metrology,1993, pp. 19{30.[39] C. K. Yap, Towards exact geometric computation,in Proc. 5th Canadian Conference on ComputationalGeometry (CCCG), 1993, pp. 405{419.[40] , Exact computational geometry and tolerancingmetrology, in Snapshots of Computational and DiscreteGeometry, Vol. 3, Tech. Rep. SOCS-94.50, D. Avis andJ. Bose, eds., McGill School of Comp. Sci., 1995.


