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Abstract

We give efficient algorithms for solving several geometric
problems in computational metrology, focusing on the fun-
damental issues of “flatness” and “roundness.” Specific-
ally, we give approximate and exact algorithms for 2- and
3-dimensional roundness primitives, deriving results that
improve previous approaches in several respects, including
problem definition, running time, underlying computational
model, and dimensionality of the input. We also study meth-
ods for determining the width of a d-dimensional point set,
which corresponds to the metrology notion of “flatness,” giv-
ing an approximation method that can serve as a fast exact-
computation filter for this metrology primitive. Finally, we
report on experimental results derived from implementation
and testing, particularly in 3-space, of our approximation
algorithms, including several heuristics designed to signific-
antly speed-up the computations in practice.

1 Introduction

Dimensional Tolerancing and Metrology (DT&M) is
concerned with the specification and measurement of
error tolerances in geometric shapes (primarily for ri-
gid manufactured parts). In the measurement (met-
rological) part of this task one is given a mathemat-
ical tolerance description and a set of points sampled
from the surface of the geometric shape and asked if
the set of points satisfies the given tolerance. Histor-
ically, this activity was a labor-intensive activity, but
relatively recent developments in technology have led
to the use of coordinate measurement machines, laser
range-finders, and scanning electron microscopes (e.g.,
see [14]) to sample points on manufactured surfaces to
provide large volumes of data for testing the conform-
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ance of these surfaces to given specifications. Unfortu-
nately, the algorithms and software needed to quickly
and accurately determine if these sample points con-
form to the given specifications has not advanced as far
as one might have hoped. Thus, we are interested in
the design of efficient, easy-to-implement algorithms for
performing such metrology primitives, with particular
attention focused on the fundamental issues of “flat-
ness” and “roundness” [38].

1.1 Previous Related Work. Since testing to see if
a set of points conforms to a notion of flatness or round-
ness is essentially a geometric computation, it should
come as no surprise that some of the issues involved
in the design of algorithms for testing these concepts
have been previously studied in the computational geo-
metry literature. Indeed, the first paper in the first
ACM Symposium on Computational Geometry is a pa-
per by Houle and Toussaint [19] (which subsequently
appeared in journal form [20]) on efficient algorithms for
solving the flatness problem for points in R? and RR®.
Interestingly, the specific problem they address, which
they called the width problem, corresponds exactly to
the mathematical notion of “flatness” that is used in the
computational metrology community (e.g., see [38]). In
this problem one is given a set S of n points in R? and
asked to find a closest pair of parallel hyperplanes in
IR? that contain all the points of S on or between them.
Houle and Toussaint [19, 20] give exact methods that
run in O(nlogn) time for points in R? and in O(n?)
time for points in IR*. Their methods are based upon
well-established computational geometry computations,
including convex hull construction and line-segment in-
tersection (e.g., see [17, 28]), and they can even be
implemented in the rational-RAM computation model,
where all arithmetic is performed exactly on rational
numbers.

Several computational geometry researchers [1, 3, 4,
5,9, 21, 30, 35] have studied the width problem further.
Since the 2-dimensional algorithm of Houle and Tous-



saint is already quite efficient, most of the subsequent
2-dimensional work has been on dynamic approximation
methods [21, 30], whereas further research on static al-
gorithms has focused on the 3-dimensional problem. For
example, the best previous deterministic algorithm for
determining the width of a set of n points in R? is due
to Chazelle et al. [9] and runs in O(n®/>¢) time, for any
fixed constant € > 0. The best randomized algorithm for
points in R? is due to Agarwal and Sharir [5] and runs in
expected time that is O(n?/?*¢), for any fixed constant
€ > 0 (see also [1]). All of these sub-quadratic methods
are based on fairly sophisticated techniques, however,
such as parametric searching [6, 9, 12, 25], and involve
the computation of lower envelopes of non-linear algeb-
raic surfaces in R*; hence, they cannot be implemented
exactly in the rational-RAM model.

There has also been some interest in the compu-
tational geometry community on various 2-dimensional
problems related to “roundness” [5, 6, 16, 22, 33, 35, 37].
All of these papers involve determining an annulus A
that contains the input set S of n points in the plane.
(Recall that an annulus A of radius pa and width
0 < wg < 2py is the region between two concentric
circles of radius ps4 + wa/2 and ps — wa/2.) Ebara
et al. [16] (see also [22, 35]) study the minimum-width
annulus problem, where one wishes to find an annulus
A that minimizes the quantity w4 (over all annuli in
the plane). They show that the center of a minimum-
width annulus containing S must be at a vertex of the
farthest-neighbor or nearest-neighbor Voronoi diagrams
(allowing for vertices at infinity [35]) or at an intersec-
tion point between these two diagrams. This, of course,
leads to an O(n?)-time algorithm, which can be im-
plemented in the rational-RAM model. Agarwal and
Sharir [5] give a randomized algorithm for solving this
problem in O(n?/21¢) expected time, for any fixed con-
stant € > 0, but their method cannot be implemented
in the rational-RAM model, as their method essentially
amounts to a reduction to a 3-dimensional width com-
putation. Alternatively, Agarwal, Sharir, and Toledo [6]
observe that one can solve the 2-dimensional minimum-
area annulus problem in linear time, via a reduction to
fixed-dimensional linear programming!. Shermer and
Yap [33] consider another notion of roundness, however,
which they call relative roundness, where one wishes
to find the annulus A containing S that minimizes the
quantity wa/(pa — wa/2), restricting its center to be
in the convex hull of S. They give an O(n?)-time al-
gorithm for computing such an annulus A (which may
not be unique, even for points in general position). They

TTn fact, in linear time, one may find the d-dimensional annulus
of minimum difference in squared radius ((pa +wa/2)? — (pa —
wa/2)?) or, equivalently, minimize the product of the radius and

width, pawa, assuming that d is fixed.

also identify an interesting research direction for DT&M
algorithms that allows one to make certain “reasonable”
assumptions about the input set. In the case of relative
roundness, for example, they show that one can derive
a linear time algorithm for point sets that are angularly
uniformly-distributed about a “near center,” “almost”
round, and in convex position.

1.2 Our Results. Unfortunately, while these previ-
ous notions of roundness may capture certain intuitive
notions of what it means for a set of points to be round
or almost-round, none of them solve the roundness prob-
lem motivated from DT&M. Recall that in the DT&M
framework one must determine if a given set of points
satisfies a given specification. It is easy (e.g., see Fig-
ure 1) to come up with sample sets S that satisfy a
given specification, but for which a solution to one of
these previous roundness definitions does not determine
this fact.

We believe the more natural notion of roundness
motivated from DT&M is something we call referenced
roundness, where one wishes to find an annulus A with
a given reference radius p that contains S and has

e width wq < ¢, for a given € > 0; or

e minimum width, wy, taken over all annuli A with
pa = p.

We refer to these two problems, respectively, as the
decision and optimization versions of the referenced
roundness problem. In either case, our referenced
roundness definition conforms to the tolerance zone
semantics described by Requicha [29], Srinivasan [36]
and Yap [40] for computational metrology.

A
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Figure 1: An example of a set with a roundness of 0 (a
perfectly flat line) but a referenced roundness of e.

In this paper we give a number of efficient, easy-to-
implement algorithms for solving computational met-
rology problems dealing with the flatness and round-
ness primitives. For example, we give simple determ-
inistic and randomized methods for solving the refer-
enced roundness problem for planar point sets that run
in O(nlogn) time (with high probability for the ran-
domized method). We also study the 3-dimensional
(sphericality) version of this problem, as well, giving
what appears to be the first non-trivial solution for a
3-dimensional roundness problem (we also give a simple



approximation algorithm for this problem). Interest-
ingly, our (exact) solution for 2-dimensional referenced
roundness can also be used to solve the approximation
version of the minimum-width annulus problem, where
the output width is guaranteed to be within a factor of
1 + € of the true width, in time O(n(logn + 1/¢)), with
high probability, for point sets that satisfy a natural
uniformity assumption.

An interesting aspect of the referenced roundness
problem is that it becomes equivalent to the flatness
(a.k.a., width) problem when r = co. We show in this
case, however, that we can significantly improve the run-
ning time for determining the width of a set of points
in R?, for any fixed d > 1, by considering an approx-
imation version of this problem. In particular, we show
how to compute a width that is guaranteed to be within
a 1+ ¢ factor of the true width in time O(a? !n), where
a = m/(2xarctan \/(2¢ + €2)/(d — 1)). We achieve this
result by several reductions to fixed-dimensional linear
programming, generalizing a 2-dimensional approach of
Janardan [21].

It may not be immediately apparent, but toleran-
cing metrology actually lends itself quite naturally to
approximation algorithms, in a fashion analogous to the
adaptive-precision approach of exact arithmetic compu-
tations [18, 34, 39]. For example, if a sample of a ma-
chine part with a tolerance of +1mm were tested using
an approximation algorithm with an error of +0.1mm, a
reported tolerance ¢t with ¢ < .9mm would, even at max-
imum possible error, still guarantee that the sample falls
within the specified tolerance, and a reported tolerance
with ¢ > 1.1mm would, at maximum error, guarantee
that the sample fails tolerance. On the other hand,
if a sample has a tolerance that is “too close to call,”
which should be a fairly rare event if the manufacturing
process is correctly calibrated, then we can resort to a
(slow) exact algorithm (e.g., [20]).

We have implemented our approximation approach
to the referenced roundness and width problems and
provide the results of benchmarking tests, which
give empirical evidence to the efficiency and ease-of-
implementation of our methods. In addition, we de-
scribe several heuristics for improving the running time
of our methods in practice, and we give empirical evid-
ence that these heuristics do indeed improve running
times.

In the sections that follow we outline the main ideas
of our results.

2 Exact and
Roundness

Approximate Referenced

In this section we give efficient algorithms for the
referenced roundness problem in the plane. The first
algorithm is deterministic and uses a simple version of

parametric searching [6, 9, 12, 25], running in O(nlogn)
time; the second one, which is somewhat simpler, is
randomized and achieves a running time of O(nlogn)
with high probability. The deterministic algorithm
generalizes to an algorithm for solving the referenced
roundness problem in 3-dimensions in near-quadratic
time. Using the referenced roundness algorithm, we
obtain an approximation algorithm for the minimum
width annulus problem, which, under certain reasonable
uniformity assumptions on the input, determines the
minimum width to within a factor 1 + ¢ and runs in
time O(1/¢) times the time for the referenced roundness
algorithm. We also describe a simple approximation
algorithm for the referenced roundness problem in a
fixed dimension d with absolute error ¢ and running
time O(n/e?), which can be improved to O(nlogn +
(1/€2)logn) in the plane.

2.1 Preliminaries. Let S be a set of n points in R%;
we will be interested in d = 2, 3 although the definitions
and some of the results extend to higher dimensions.

Balls, annulus, intersection and union of balls.
For a point p in the plane and a real number r > 0,
let b.(p) denote the ball of radius r centered at p.
Let A ., (p) be the annulus b, /2(p) — int (b, /2(p)).
We say that A,, has radius r and width w. Let
Z, = I,(S) = (,esbr(p) denote the intersection of
the r-radius balls centered at points in S and let U, =
Ur(S) = Upesbr(p) denote the union of this set of
balls. Also, let X, ,, = X, (S) = ﬂpes Arw(p). Note
that X, o = Z, 442 — int(Uy_,/2). For fixed 7, we call
Xw = X, the w-feasible region, because g € X, ,, if
and only if S C A, .,(q).

Nearest and furthest point Voronoi diagrams.
The nearest point Voronoi diagram V, = V,(S) of S
is the complex of closed convex cells consisting of the
d-dimensional cells V*(S) = {g € R? : [|g — p|| < |l —
p'll,p’" € S} and their intersections V& (S) = ,cq V'
for S’ C S. The 0- and 1-cells are called vertices and
edges. The furthest point Voronoi diagram V; = V()
is defined similarly with the d-cells V,/(S) = {g € R*:
llg —pll > llg = p'll,p" € S} (which are non empty iff
p is on the boundary of the convex hull of S). Both
Voronoi diagrams have size O(n!%/21) [24] (O(n) for
d = 2 and O(n?) for d = 3) and can be computed in
time O(nlogn + n/?21) [8] (O(nlogn) for d = 2 and
O(n?) for d = 3). The 1-skeleton of V,, (resp. Vy) is the
subcomplex consisting of the 0- and 1-cells. For further
information see, e.g., [17, 28]. The carrier cy(q) of a
point ¢ in V, is the cell in V,, of smallest dimensionality
that contains ¢ (we will use the concept of carrier for
objects other than points, for example, the carrier of
an edge). ¢n(q) is V' where T is the set of sites in S



nearest to g. Let n(g) be the corresponding distance
to a nearest site. Then ¢ is in the boundary of U, ().
Similarly, cf(q) is the carrier of ¢ in V¢, f(q) is the
distance to a furthest site, and ¢ is in the boundary of
Zi(q)-

Constructing the w-feasible region. Given a point
set S, a radius py and a width w, we compute the w-
feasible region X, = X, ,(95).

LEMMA 2.1. Given V, and Vy, X, can be constructed
in time O(n) for d =2 and in time O(n?) for d = 3.

Proof. Let us consider first the case d = 2. Let R =
po +w/2 and r = pg — w/2. Let P = bd(Zg) and
@) = bd(U,). Assuming V,, and V; are known, P and @
can be computed in time O(n). More precisely, in time
O(n), we can determine P within each cell of V¢, and
@ within each cell of V,,. Next, taking advantage of the
fact that Zg is convex, we compute the intersection of
P with the cells of V,, in time O(n) by walking along
P and the portions outside Zg of the cells of V,, that
intersect P. See Figure 2.

Figure 2: Intersecting P and V,,.

Next, the intersection of P and () is obtained by
walking along P on V,. As each cell ¢ is visited, the
intersection with () inside ¢ is computed; for this, the
following information is needed: the relative order of
the intersections of P and @) with the boundary of ¢
and the relative position of the vertices and edges of P
in ¢ respect to the ball in ¢. Finally, X, is computed:
If the intersection of P and @ is empty then the result
depends on whether P is contained in i/, and on whether
some components of () are contained in Zg. If their
intersection is not empty, then the boundary of X,
consists of a portion of P and the portions of () inside
P. The overall time used is O(n).

Each of the steps can be extended to the case d = 3.
In this case the size of V,, and V; is O(n?). As before,
we first compute the intersection of P with V; and of @
with V,,, but now in time O(n?) (even though the size
of P is just O(n)). Note that the size of the intersection
of P with V,, is O(n?). The same bound is true then for
the intersection of P and @, and so for the boundary
of X,. Thus, taking advantage of the fact that Zp is
convex, we compute the intersection of P with the cells

of V,, and the intersection of P and @ in time O(n?).
Finally, X, is obtained using overall time O(n?). The
details are omitted here. ®

Thus, the decision version of the referenced round-
ness problem can be solved in time O(n) for d = 2 and
in time O(n?) for d = 3, given V,, and Vy.

2.2 Algorithms for optimal referenced round-
ness in the plane. Let us now consider the optim-
ization version of referenced roundness, which is to de-
termine, given a point set S and a radius py > 0, the
minimum width wy > 0 such that for some point x,
S C A, wo(x). Note that this is equivalent to determ-
ining the minimum wg so that X, ., # 0.

As in the previous subsection, since the radius pqg
remains fixed, we drop po from the notation. Let
us assume that for some z, S C Ay, (z), and hence
X,, # 0 (this can be determined quickly given V, and
V¢). Consider X, as w decreases from w = 2pg tow = 0.
X, decreases monotonically, that is, if z ¢ X then
r ¢ X, for w < w'. This is because Z, 4, /» decreases
monotonically, while U,,_, /> increases monotonically.
This elementary observation is essential for being able
to obtain a fast algorithm because it allows the use of
a binary search to determine wy. Specifically, it implies
that for wy < w < 2pg, X, # 0 while for w < wg,
X, = 0.

Deterministic algorithm. Using the technique of
parametric searching and a parallel version of the al-
gorithm of the previous section for constructing an w-
feasible region, we can obtain an algorithm for the op-
timization version of the referenced roundness problem
that runs in time O(nlogn).

THEOREM 2.1. The optimal referenced roundness prob-
lem in the plane can be solved in time O(nlogn) determ-
inistically.

Proof. In the construction of the feasible region, all
comparisons involving w can be parallelized into O(1)
batches of O(n) comparisons or O(n) independent bin-
ary searches. Other parts of the algorithm not involving
w are performed sequentially. We ellaborate on this
claim: To compute P = bd(Zg), first determine in par-
allel for each edge of V; whether it intersects P (this
requires O(1) comparisons involving w), and then con-
struct P sequentially; to obtain the intersection of P
and V,, for each vertex of V), in parallel, using a binary
search (point location) determine whether it lies inside
or outside Zg, and for each edge of V,, in parallel, using a
binary search determine whether it intersects P; finally,
to compute the intersection of P and @, for each edge
of V,, in parallel, determine the relative position of its
intersections with P and (), for each vertex of P in par-
allel determine whether it lies inside or outside the ball



in its carrier in V,, containing it, and for each segment of
edge of P in parallel determine whether it intersects the
boundary of the ball in its carrier in V,,. The algorithm
uses O(nlogn) work. Then, using parametric search-
ing, with this algorithm and the sequential O(n) time
oracle from the previous subsection, plus Cole’s speed-
ing up trick [12], we derive an optimization algorithm

using overall time O(nlogn). ®

Randomized algorithm. Even though the previous
method uses a simple version of parametric search, we
are aiming for an algorithm that combines the maximum
achievable efficiency and simplicity. So we describe
an even simpler randomized algorithm for referenced
roundness in the plane.

For any edge e in V, (resp. V) its center is
the intersection of e with the line segment joining the
sites determining e (if nonempty). If we introduce
these centers as additional vertices, hence splitting some
edges into two new edges, then we have the following
observation (actually, in V; only one center may be
needed, the center of the minimum enclosing disk): n(q)
is monotone along edges in V,,; f(g) is monotone along
edges in Vy. Let wy(z) = 2(po — n(z))) and wy(z) =
2(f(z) — po). wy and wy are monotone on edges of V,
and V¢ respectively. Let w(z) = min{w,(x),ws(z)}.
Note that z disappears from X, at w = w(z).

LEMMA 2.2. wqy is w(z) for some point x on the 1-
skeleton of V, or V.

Figure 3 shows X, . just before vanishing along
edges in V,, and Vy. Large circles are shown dashed and
small circles are shown continuous.

A B

Figure 3: X, . vanishing along edges in nearest and
furthest Voronoi diagrams.

For edges e, and ey in V,, and Vy respectively, let
v(en,ey) be their intersection if it exists. Let Z be
the set of those intersection points v(e,,er), and let
T’ counsist of 7 together with the vertices of V,, and Vy
and the centers of their edges. An elementary segment
is a segment e’ of an edge e, or ey in V,, or V¢, whose
endpoints are in Z' and contains no point in Z' in its
interior. For an elementary segment €', the minimum w

so that ' N X, # 0, denoted w(e'), can be computed in
constant time (assuming the carrier in the other Voronoi
diagram is known). By the previous lemma, to obtain
wo, it is sufficient to compute w(z) for x € 7', and w(e')
for all elementary edge pieces. Since in the worst case
there may be @(n?) of them, we need a way to reduce
the number of them that need to be considered. The
way we proceed is inspired by randomized algorithms
for the slope selection problem [13, 23, 32].

First, we establish a linear ordering <; on the points
in 7' as follows: v <; v' iff w(v) < w(v') or (to break
matches) w(v) = w(v') and v <, v' where <, is some
other arbitrary linear ordering. The key point of the
approach is the following: For each k& > 0, there are
constants C,C" > 0 such that if we choose at random
K = Cn points v; <; --- <; vk from 7 then with
probability at least 1 — 1/n*  each interval wv;, vy
contains at most C'nlogn points in Z. In particular,
there are O(nlogn) points v in Z with v <; vq; that is,
with w(v) < w(vy). Let w* = w(vy). It remains to find
the portions of the 1-skeletons of V,, and Vy contained
in X+ and from there the points in Z' contained in
X,~, and deal with all the corresponding elementary
segments directly. Using simple techniques, the steps of
the algorithm described can be implemented to run in
O(nlogn) time, with high probability, which establishes
the following theorem:

THEOREM 2.2. The optimal referenced roundness prob-
lem can be solved in time O(nlogn), with high probab-
lity.

2.3 Roundness in 3-d space. The roundness
problem in 3-dimensional space is also of practical
importance, but has not received much attention. In
this case the ideal shape is a sphere or a spherical patch.
Our referenced roundness concept and the approach
to computing it extend to the 3-dimensional case. As
already pointed out, the feasible region has complexity
O(n?) and can be computed from the Voronoi diagrams
in time O(n?); then using parametric searching we
derive an efficient algorithm for referenced sphericality.

THEOREM 2.3. The referenced roundness  prob-
lem in S3-dimensional space can be solved in time

O(n? polylog(n)).

2.4 Approximation algorithm for referenced
roundness. We develop a simple approximation al-
gorithm for the referenced roundness problem in any
fixed dimension d > 2. We show that in O(a’n) time
we can compute w’ such that w' —w < € where a = \/E/e
and w' and w are the approximate and true widths, re-
spectively. The algorithm is quite straightforward, it
works by dividing a box bounding the points into a uni-



form grid of size a?, but the dependency on € is ex-
tremely high. To alleviate this burden, we show that
various heuristics can significantly reduce the a value
in practice, including the use of approximate nearest-
and farthest-neighbor searching [2, 7]. In the full ver-
sion we establish the following.

THEOREM 2.4. The referenced roundness of a point set
S inR?, for fired d > 2, can be approzimated in O(a"n)
time such that W' — w < Vd/a, where w' and w are the
approximate and true widths respectively.

In our section on implementation we explore some
heuristics that should reduce the a? factor significantly
in practice.

2.5 Approximation algorithms for min-width
annulus. Recall the minimum-width annulus problem,
where one is given a point set S in the plane, and
asked to determine the minimum width w,, > 0 such
that for some radius p,, and some point z,,, S C
Ay wm(Tm). As mentioned earlier, the min-width
annulus algorithms with running times that are o(n?) [5,
6] do not seem to be of practical value in the near
future. Thus, we consider approximation algorithms,
in the spirit of the approach of Shermer and Yap [33],
under reasonable assumptions about the input data,
which are realistic in the sense that they can be expected
from data in tolerancing metrology or enforced in the
measurement process. Also, an absolute error does not
seem acceptable since the width is likely to be very
small. We introduce a reasonable restriction on the
input data that allows to obtain a relative error: We
say that S is @-uniform if a minimum width annulus
A, o (Tm) is so that any sector of angle 6 centered at
., intersects S.

Our approach is quite simple: First determine
an approximation p. of p,, such that |[p. — pn| <
Cwp, /2, and an approximation w. of w,, such that
W < we < Duw,, for some constants C,D. Then
repeat the referenced roundness algorithm R = E(1/¢)
times with values of p uniformly distributed between
pe — Cw, /2 and p. + Cw, /2, with E = 2CD. Note that
if |pe — pm| < A then |w(pe)/2 —wm /2| < A. So, it only
remains to describe how to obtain p. and we.

Let z(S) be the center of the minimum enclosing
disk of S. Then let p, and w, be the radius and the
width of the minimum width annulus centered at z. If
Wm /2pm > 1/5 then the conditions required for p. and
we are trivially satisfied: |pe — pm| < pm < Bwin/2,
and we/2 < pm < 5w, /2. So assume Wy, /2p, < 1/5.
Figure 4 shows a min-width annulus and the minimum
enclosing disk (in the extreme case that its radius is
equal to the exterior radius of the min-width annulus).

If the centers are displaced by kw,,/2 with k > 2

Figure 4: Approximation by minimum enclosing disk.

then the angle # shown in the figure satisfies

2 W /2 ko2

k' pm—wm/2 <2 k) '

Take k& > 4. Then cosf < 1/2 and hence § > 7/6.
Assuming that S is (7/3)-uniform, then k¥ < 4 and
consequently |pe — pm| < 5w /2 and we/2 < 5wy, /2.
The concept of uniformity can be extended to d = 3

(using cones), and a similar analysis applies. Thus, we
have:

THEOREM 2.5. There is an approzimation algorithm
for the min-width annulus problem on 8-uniform sets of
points, with appropriate 6, that outputs a width within a
factor 1+ € of optimal in time O((1/€)nlogn) for d =2
and in time O((1/€)n?polylog(n)) for d = 3.

In the plane, using the randomized algorithm we
obtain a somewhat simpler randomized algorithm with
the same running time with high probability. The
same approach estimates the center of a min-width
annulus within distance O(w,,). Therefore, using the
grid approach described above, we obtain the following
alternative algorithms:

THEOREM 2.6. There is an approrimation algorithm
for the min-width annulus problem on 6-uniform sets of
points, with appropriate 8, that outputs a width within
a factor 1+ € of optimal in time O(n/e?). For d = 2,
this can be improved to O(nlogn + (1/€*)logn).

3 Approximating the Width

Recall that in the width problem one is given a set
S of n points in R? and asked to find a closest pair
of hyperplanes that contain all the points of S on or
between them. Janardan [21] describes an algorithm
that efficiently maintains the approximate width of a
dynamic 2-dimensional point-set in O(alog®n) time.
In this section we extend his approach to d-dimensions
and show how a carefully formulated subproblem is
equivalent to a linear program with O(n) constraints
and d + 1 variables, which, for d > 2 being a fixed
constant, is a problem that can be solved in O(n)
time [10, 11, 15, 26, 27, 31].



3.1 Skewed distances between hyperplanes. Let
A and B be two parallel hyperplanes in d-space defined
by the respective equations (ag,a1,...,aq4_2,—1)x +
ag_1 = 0 and (bo,bl,...,bd,m*l)x 4+ bg1 = 0.
Since the two planes are parallel, we know that their
normals are parallel, which implies that ag = by, a1 =
bl, e, Q4—2 = bd,2.

Recall that the distance, §, between these two hy-
perplanes is |ag_1 — bg—1|/V N - N, where the normal
N to the hyperplanes is N = (ag,a1,...,a4-2,—1).
We define the skewed distance, F(4), between
two hyperplanes as F(§) = |ag—1 — ba_1| =

6\/a% +af +---+a% ,+1, which can be significantly

larger than § for large values of ag,ai,..., or agz_o.
However, if the normal to the hyperplanes is small, we
can see that F(d) =~ §. We will exploit this property

shortly.

3.2 The Skewed Width Problem. Before we ap-
proximate the minimum width problem, let us consider
the simpler problem of finding the pair of hyperplanes
containing S with minimum skewed distance, i.e. the
skewed width problem.

In order to solve this simpler width problem, we
must first find at least two parallel hyperplanes con-
taining all of the points between them. It is known that
a hyperplane A (resp. B) is above (below) all of the
points in S if and only if Vp € S, p lies in the half-space
defined as A4 > 0 (resp. B <0).

Thus, our search space is the set P of all pairs of
parallel planes (A, B) such that A (resp. B) is above
(below) all points in S. Notice also that the boundary
of P corresponds to the convex hull of S.

We now proceed to find the pair (4,B8) € P with
the minimum skewed distance. From the above, we can
see that this optimization problem is simply a linear
program of the form:

Minimize
a—b

such that
Vp € S,with p = (po,p1,..-,Pd-1)
(ag,ai1,...,aq—2,—1)(po,...,pa—1)+a >0
(ag,ai1,...,aa—2,—1)(po,...,pa—1)+b<0

This is a linear program with 2n constraints and
d + 1 variables, which can be solved in O(n) time
for fixed d. However, as noted by Janardan [21], the
skewed width solution does not necessarily yield an
accurate approximation to the width, because F(§) can
be significantly larger than §, as noted in Section 3.1.

3.3 Approximating the Width. In the plane to
yield a tightly bounded approximation, we solve the
skewed width problem in a different coordinate systems
C; = (X;,Y;), for some o > 1, where X; and Y; are

the respective z- and y-axes. X, is horizontal (original
z-axis) and X;(i = 1,...,a — 1) makes an angle of
> with X; ;. In one of the Cj, the optimal solution
has parallel lines with slope m such that |m| < tan .
Intuitively, one can see that the optimal lines must lie
at an angle which is in the range (37, 5;) for some
coordinate system.

This idea can easily be extended to the d-
dimensional case by having a?"' coordinate systems
Cig..ign = (Xo, -+, Xd-1)ig...ia_p for 0 < ig... 059 <
a where the plane formed by the axes X; and Xgq_1(j =
0,...,d — 2) is rotated within the plane by an angle
%j. Now the optimal pair of hyperplanes with normal
N = (mg,...,mq »,—1) must have all |m;| < tan -
for some coordinate system C;, i, _,, denoted by C,,.

Recall, from Section 3.1, that F(8) = /N - N. Let
F(big..iy_) for (0 < ig...ig—2 < ) be the minimum
skewed width in the coordinate system Cj, i, ,. Spe-
cifically, let F(d,,) be the minimum skewed width found
in C,. Let W' be the minimum over all d;, ;, ., and let
W be the true optimal width over the set S. It follows
that

W' b5, < F(,) < FW)=WVN-N

W\/l +(d—1)tan® &

2a0

<
<

Letting 7= = arctan y/2£< yields W' < W (1 + ).
Since the linear program in each coordinate system
can be constructed in O(n) time and solved in O(n)

time for fixed d, the total running time of our algorithm
is O(a? 1n) time.

THEOREM 3.1. Given a set S of n points in R?, for
a fited d > 2, one can compute in O(n) time an
approzimation W' to the width of S such that W' <
(1 + €)W, where W is the width of S, for any fized

constant € > 0.

4 Implementation and Experimentation

Both the referenced roundness and minimum width
approximation algorithms, although running in linear
time, depend heavily on the number of grids or coordin-
ate systems, respectively, hereafter referred to as par-
titions, tested. A natural question then is, “Can we
effectively reduce the number of partitions tested?”

4.1 Implemented heuristics for the approxim-
ate width problem. In practice, for the width prob-
lem, the answer is probably “yes,” since most width
computations will be performed on point sets that are
known to be reasonably flat. Theoretically, of course,
one can construct almost degenerate sets of points
nearly uniformly distributed on a unit hypersphere, for
which the answer to the above question would be “no.”



Therefore, we implemented and tested our approx-
imate width algorithm on example point sets (particu-
larly in IR®) that were known to be “fairly flat.” With
this application in mind, we analysed some heuristics
for reducing the number of tested coordinate systems
needed to produce an accurate approximate solution to
the width problem. Even though the following heur-
istics exploit this flatness property, they remain robust
enough to handle sets of other shapes.

To construct our fairly flat surfaces of varying ori-
entation, size, and width, we selected random points on
a surface of random size and orientation in space and
perturbed them slightly away from the surface at ran-
dom amounts. The graph in Figure 5 shows two values:
the maximum error ratio between the approximate and
true widths (a straightforward formula) and the aver-
age ratio between the approximate and true widths as
reported in our testings for various values of a. As can
be seen from the graph, regardless of the theoretical er-
ror rate, for fairly flat surfaces, the algorithm tends to
perform extremely well in approximating the width.

Error Ratio to Alpha Plot
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Figure 5: Comparing the theoretical error bound to actual
error bounds.

The bottleneck in this approximation algorithm is
the heavy dependence of the running time on a%~!. If
we can, in any way, prevent several possibly needless
partitions from running the linear program, we drastic-
ally reduce the running time, allowing even better ap-
proximations in equal amounts of time. We begin with
a simple observation.

LeEMMA 4.1. Let §; and N; be, respectively, the minimal
distance between and mormal to the two supporting
hyperplanes found by our linear program. For any two
parallel hyperplanes with normal N; and distance 6;, if
Nj . Nj S Nl . Ni, then (Sl S (Sj.

Proof. Since 6 = F(3)/VN -N, F(4;) < F(d;), and
Ni . Nl Z Nj . Nj Z 1, it follows that (Sl S (Sj. L

Before we can remove all possible planes fulfilling

this property, we need one more observation. Let NN;,
be the normal for any pair of parallel hyperplanes, A;
and B;, in the partition P, and let P be the set of all
partitions tested. We define the scope of a partition
P to be the set Sp of all pairs (A;, B;) having normal
N; such that N; - N; < Ny, - N;,,VQ € P. In other
words, the scope contains all hyperplanes whose normal
is minimized in that particular partition.

Because the normal is minimized, the distance F(d;)
between the hyperplanes A; and B; is minimized in the
partition P where (A;,B;) € Sp. If we reject an entire
set Sp in another partition @), we can ignore partition
P because all remaining planes must be elements of
the scopes of other partitions. Consequently, we may
eliminate, after only a few linear program calls, several
unlikely candidate partitions.

In order to maximize the elimination process, we
now only need to determine the evaluation order of
the partitions. We implemented three slightly different
heuristics. The first of our heuristics simply does
each partition in lexicographic order. The second and
third implementations “bounce” around the partition
set in, respectively, a random order and a predefined
manner, trying the middle partition first, subdividing,
and recursing on each half. The graph in Figure 6 shows
the number of partitions tested for a random sample of
fairly flat hyperplanes in the standard mode (a?~!) and
in each of these three heuristics.

Average number of partitions tested by each heuristic
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Figure 6: Comparing the partition-reduction heuristics to
the standard mode. Each point on the graph is an average
of four random orientations of an almost-flat set of 50,000
points in IR?.

As one can see, these heuristics provide a significant
decrease in the number of partitions tested, yielding a
much improved running time over the original method
for higher values of a. Thus, utilization of the above
heuristics can significantly improve performance.

4.2 Implemented heuristics for the referenced
roundness problem. Previously, we showed that the



referenced roundness could be approximated in linear
time with a heavy dependency on e. To cut the
dependence upon e for several practical scenarios, we
use the following observation.

LeEMMA 4.2. Let P be any subdivision of a bounding box
for a set S. Let g be a grid of P with a referenced
roundness pg at its center and an error bound of d,
equivalent to the distance from its center to farthest
corner, and let p' be the referenced roundness for any
point in P. If py — 64 > p', then py, > p' for any point
heg.

Proof. By the definitions of referenced roundness and
nearest and farthest neighbors, pp, € [pg+ 84, pg —04]. ®

If we recursively subdivide the grids starting from a
single grid, we may eliminate any grid with p, —d, > p'
where p’ is the current minimum observed referenced
roundness. In practice, this should significantly reduce
the number of grid points tested. Again, the main diffi-
culty becomes determining the order in which the grids
are searched. We implemented two search methods.
The first is a depth-first search that continuously evalu-
ates and subdivides one particular grid completely un-
til the maximum number of divisions is attained before
proceeding to the next grid. The second is a breadth-
first search that evaluates all grids at a particular di-
vision level and subdivides only valid grids before ree-
valuating.
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Figure 7: Comparing the grid-reduction heuristics to the
standard mode. Each point on the graph is an average over
40 runs consisting of random orientation and thickness of
an annulus of fixed radius with points ranging from 100 to
10,000 points in IR?. Notice the immediate departure of
the exhaustive method.

Figures 7 and 8 compare these two heuristics to
the straightforward exhaustive search. Note that there
is a vast reduction in the number of partitions tested
in the breadth-first search method in comparison to

Average number of grid centerstested by each heuristic (3-D)
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Figure 8: Similar to the previous figure with the points
in R®. Again notice the immediate departure of the
exhaustive and depth-first pruning method.

the original method. It is interesting to note that the
depth first search tended to improve as the number of
points increased, possibly due to a reduction in potential
centers.

5 Open Problems

There are still many questions to be answered and many
more yet to be asked.

e Can the bound on the referenced roundness prob-
lem in 3-space be improved?

e Are there any better non-trivial solutions to ap-
proximating the referenced roundness problem in
higher dimensions, possibly by assuming the pres-
ence of “nearly round” objects?

e Can we tighten the error bound on the approximate
width problem?

e Can we prove that any of the heuristics, under
reasonable constraints, improve on the theoretical
performances?

e What other solutions are there to such tolerancing
problems as cylindricity, perpendicularity, and po-
sition?
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