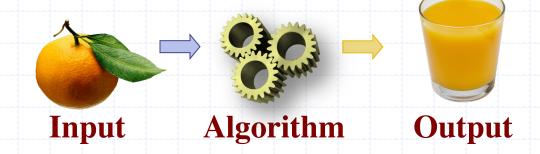
Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Analysis of Algorithms



Scalability

- Scientists often have to deal with differences in scale, from the microscopically small to the astronomically large.
- Computer scientists must also deal with scale, but they deal with it primarily in terms of data volume rather than physical object size.
- Scalability refers to the ability of a system to gracefully accommodate growing sizes of inputs or amounts of workload.

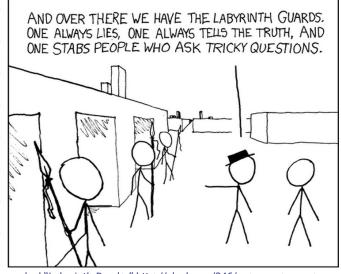
Microscope: U.S. government image, from the N.I.H. Medical Instrument Gallery, DeWitt Stetten, Jr., Museum of Medical Research. Hubble Space Telescope: U.S. government image, from NASA, STS-125 Crew, May 25, 2009.

Application: Job Interviews

- High technology companies tend to ask questions about algorithms and data structures during job interviews.
- Algorithms questions can be short but often require critical thinking, creative insights, and subject knowledge.

 All the "Applications" exercises in Chapter 1 of the Goodrich-Tamassia textbook are taken from reports of actual job interview

questions.



xkcd "Labyrinth Puzzle." http://xkcd.com/246/ Used with permission under Creative Commons 2.5 License.

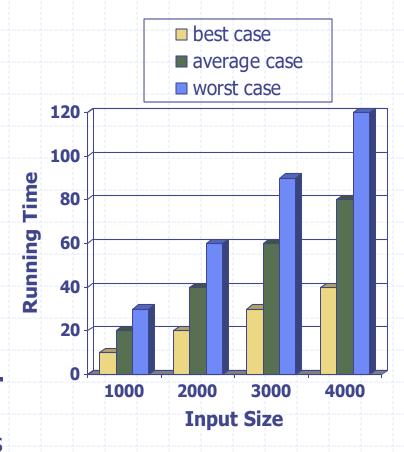
Algorithms and Data Structures

- An algorithm is a step-by-step procedure for performing some task in a finite amount of time.
 - Typically, an algorithm takes input data and produces an output based upon it.

 A data structure is a systematic way of organizing and accessing data.

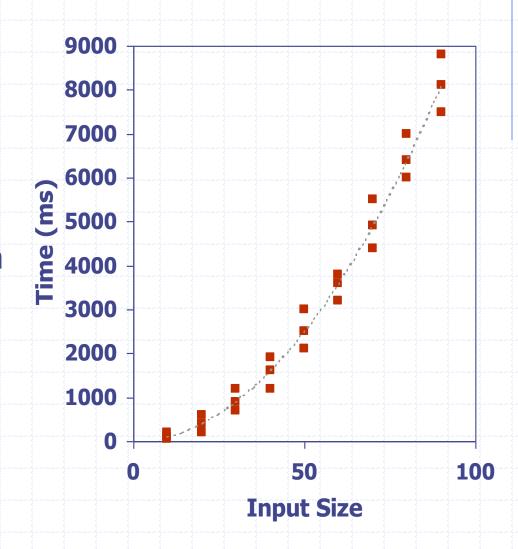
Running Time

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus primarily on the worst case running time.
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics



Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition, noting the time needed:
- Plot the results



Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used

Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n
- □ Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment

Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues

Pseudocode Details

- Control flow
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Indentation replaces braces
- Method declaration

```
Algorithm method (arg [, arg...])
```

Input ...

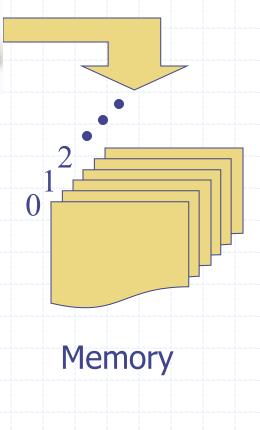
Output ...

- Method call
 method (arg [, arg...])
- Return value return expression
- Expressions:
 - ← Assignment
 - = Equality testing
 - n² Superscripts and other mathematical formatting allowed

The Random Access Machine (RAM) Model

A RAM consists of

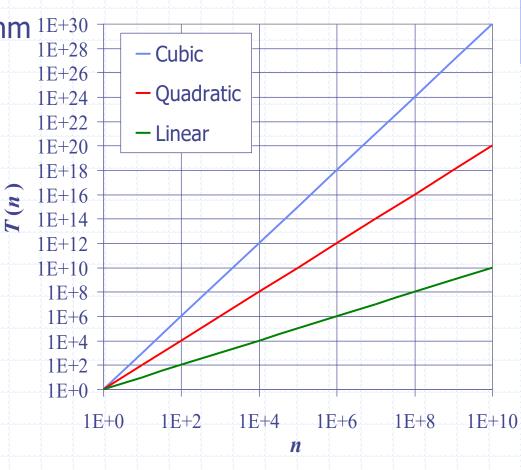
- A CPU
- An potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character
- Memory cells are numbered and accessing any cell in memory takes unit time



Seven Important Functions

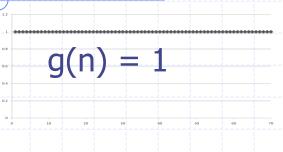
- Seven functions that
 often appear in algorithm 1E+30
 analysis:

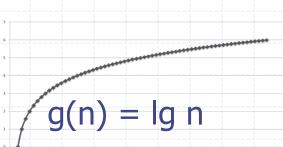
 1E+28
 1E+26
 - Constant ≈ 1
 - Logarithmic $\approx \log n$
 - Linear $\approx n$
 - N-Log-N $\approx n \log n$
 - Quadratic $\approx n^2$
 - Cubic $\approx n^3$
 - Exponential $\approx 2^n$
- In a log-log chart, the slope of the line corresponds to the growth rate

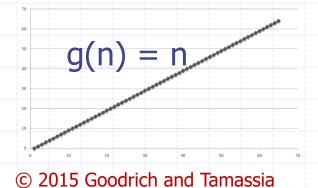


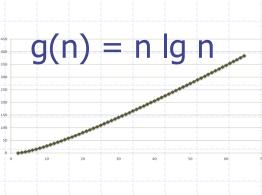
Functions Graphed Using "Normal" Scale

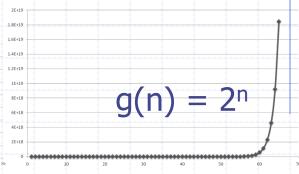
Slide by Matt Stallmann included with permission.

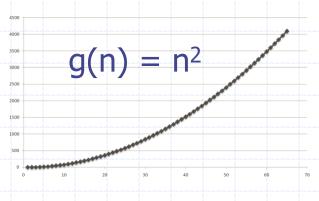


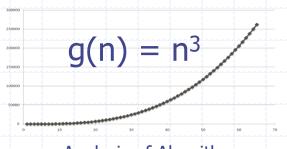












Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model

- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method

Counting Primitive Operations

Example: By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size

```
Algorithm arrayMax(A, n):
```

Input: An array A storing $n \ge 1$ integers.

Output: The maximum element in A.

 $currentMax \leftarrow A[0]$

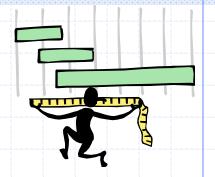
for $i \leftarrow 1$ to n-1 do

if currentMax < A[i] then

 $currentMax \leftarrow A[i]$

return currentMax

Estimating Running Time



- □ Algorithm arrayMax executes 7n 2 primitive operations in the worst case, 5n in the best case. Define:
 - a = Time taken by the fastest primitive operation
 - b = Time taken by the slowest primitive operation
- □ Let T(n) be worst-case time of arrayMax. Then $a(5n) \le T(n) \le b(7n-2)$
- \Box Hence, the running time T(n) is bounded by two linear functions

Growth Rate of Running Time

- Changing the hardware/ software environment
 - \blacksquare Affects T(n) by a constant factor, but
 - Does not alter the growth rate of T(n)
- The linear growth rate of the running time T(n) is an intrinsic property of algorithm arrayMax

Slide by Matt Stallmann included with permission.

Why Growth Rate Matters

if runtime	time for n + 1	time for 2 n	time for 4 n
c lg n	c lg (n + 1)	c (lg n + 1)	c(lg n + 2)
c n	c (n + 1)	2c n	4c n
cnlgn	~ c n lg n + c n	2c n lg n + 2cn	4c n lg n + 4cn
c n²	~ c n ² + 2c n	4c n ²	16c n ²
c n³	~ c n ³ + 3c n ²	8c n ³	64c n ³
c 2 ⁿ	c 2 n+1	c 2 ²ⁿ	c 2 ⁴ⁿ

runtime quadruples → when problem size doubles

Analyzing Recursive Algorithms

Use a function, T(n), to derive a recurrence
 relation that characterizes the running time of the algorithm in terms of smaller values of n.

Algorithm recursive Max(A, n):

Input: An array A storing $n \ge 1$ integers.

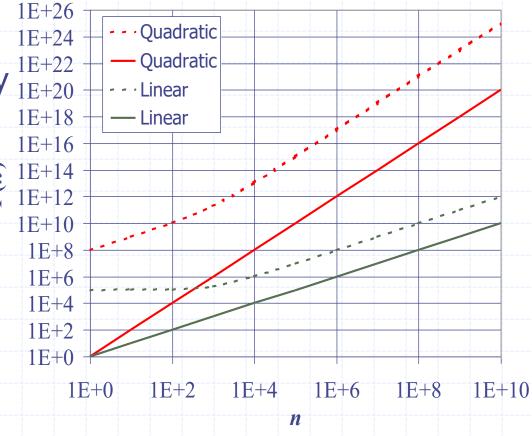
Output: The maximum element in A.

 $\begin{array}{l} \text{if } n=1 \text{ then} \\ \text{return } A[0] \\ \text{return } \max\{\text{recursiveMax}(A,n-1),\, A[n-1]\} \end{array}$

$$T(n) = \begin{cases} 3 & \text{if } n = 1 \\ T(n-1) + 7 & \text{otherwise,} \end{cases}$$

Constant Factors

- The growth rate is minimally affected by
 - constant factors or
 - lower-order terms
- Examples
 - 10^2 **n** + 10^5 is a linear function
 - $10^5 n^2 + 10^8 n$ is a quadratic function

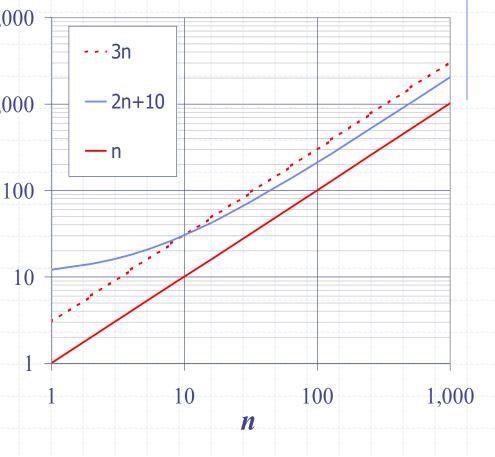


Big-Oh Notation

Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n_0 such that

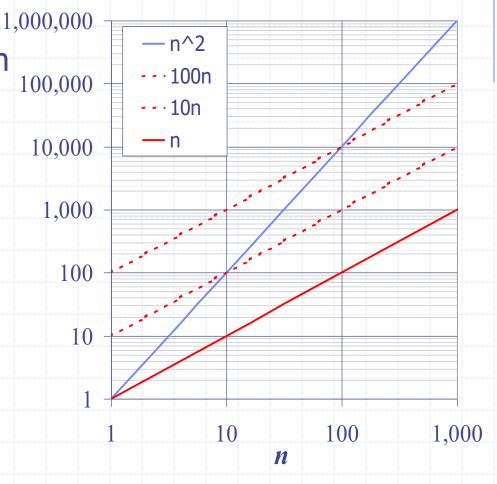
$$f(n) \le cg(n)$$
 for $n \ge n_0$

- □ Example: 2n + 10 is O(n)
 - $2n + 10 \le cn$
 - $(c-2) n \ge 10$
 - $n \ge 10/(c-2)$
 - Pick c = 3 and $n_0 = 10$



Big-Oh Example

- Example: the function n^2 is not O(n)
 - $n^2 \leq cn$
 - $n \leq c$
 - The above inequality cannot be satisfied since c must be a constant



More Big-Oh Examples

- □ 7n 2
 - 7n-2 is O(n) $need\ c>0\ and\ n_0\geq 1\ such\ that\ 7\ n-2\leq c\ n\ for\ n\geq n_0$ this is true for c=7 and $n_0=1$
 - $\begin{array}{c} \ \, \square \ \, 3 \, \, n^3 \, + \, 20 \, \, n^2 \, + \, 5 \\ \ \, 3 \, \, n^3 \, + \, 20 \, \, n^2 \, + \, 5 \, \text{is O}(n^3) \\ \ \, \text{need c} \, > \, 0 \, \, \text{and} \, \, n_0 \, \geq \, 1 \, \, \text{such that} \, \, 3 \, \, n^3 \, + \, 20 \, \, n^2 \, + \, 5 \, \leq \, c \, \, n^3 \, \, \text{for} \, \, n \, \geq \, n_0 \\ \ \, \text{this is true for c} \, = \, 4 \, \, \text{and} \, \, n_0 \, = \, 21 \\ \end{array}$
 - \Box 3 log n + 5

 $3 \log n + 5 \text{ is O(log n)}$ need c > 0 and $n_0 \ge 1$ such that $3 \log n + 5 \le c \log n$ for $n \ge n_0$ this is true for c = 8 and $n_0 = 2$

Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function
- The statement "f(n) is O(g(n))" means that the growth rate of f(n) is no more than the growth rate of g(n)
- We can use the big-Oh notation to rank functions according to their growth rate

	f(n) is $O(g(n))$	g(n) is $O(f(n))$
g(n) grows more	Yes	No
f(n) grows more	No	Yes
Same growth	Yes	Yes

Big-Oh Rules

- □ If is f(n) a polynomial of degree d, then f(n) is $O(n^d)$, i.e.,
 - Drop lower-order terms
 - 2. Drop constant factors
- Use the smallest possible class of functions
 - Say "2n is O(n)" instead of "2n is $O(n^2)$ "
- Use the simplest expression of the class
 - Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Asymptotic Algorithm Analysis

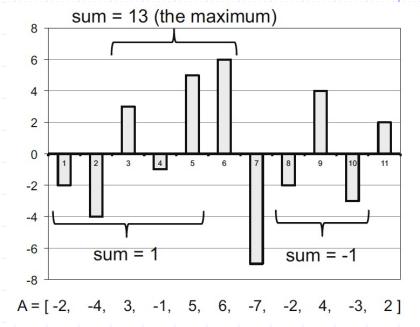
- The asymptotic analysis of an algorithm determines the running time in big-Oh notation
- To perform the asymptotic analysis
 - We find the worst-case number of primitive operations executed as a function of the input size
 - We express this function with big-Oh notation
- Example:
 - We say that algorithm arrayMax "runs in O(n) time"
- Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations

A Case Study in Algorithm Analysis

 Given an array of n integers, find the subarray, A[j:k] that maximizes the sum

$$s_{j,k} = a_j + a_{j+1} + \dots + a_k = \sum_{i=j}^{k} a_i.$$

In addition to being an interview question for testing the thinking skills of job candidates, this maximum subarray problem also has applications in pattern analysis in digitized images.



A First (Slow) Solution

Compute the maximum of every possible subarray summation of the array *A* separately.

```
Algorithm MaxsubSlow(A):

Input: An n-element array A of numbers, indexed from 1 to n.

Output: The maximum subarray sum of array A.

m \leftarrow 0 // the maximum found so far

for j \leftarrow 1 to n do

for k \leftarrow j to n do

s \leftarrow 0 // the next partial sum we are computing

for i \leftarrow j to k do

s \leftarrow s + A[i]

if s > m then

m \leftarrow s

return m
```

- The outer loop, for index j, will iterate n times, its inner loop, for index k, will iterate at most n times, and the inner-most loop, for index i, will iterate at most n times.
- Thus, the running time of the MaxsubSlow algorithm is $O(n^3)$.

An Improved Algorithm

 A more efficient way to calculate these summations is to consider prefix sums

$$S_t = a_1 + a_2 + \dots + a_t = \sum_{i=1}^t a_i$$

□ If we are given all such prefix sums (and assuming $S_0=0$), we can compute any summation $s_{j,k}$ in constant time as

$$s_{j,k} = S_k - S_{j-1}$$

An Improved Algorithm, cont.

- Compute all the prefix sums
- Then compute all the subarray sums

```
Algorithm MaxsubFaster(A):

Input: An n-element array A of numbers, indexed from 1 to n.

Output: The maximum subarray sum of array A.

S_0 \leftarrow 0 // the initial prefix sum

for i \leftarrow 1 to n do

S_i \leftarrow S_{i-1} + A[i]

m \leftarrow 0 // the maximum found so far

for j \leftarrow 1 to n do

for k \leftarrow j to n do

s = S_k - S_{j-1}

if s > m then

m \leftarrow s

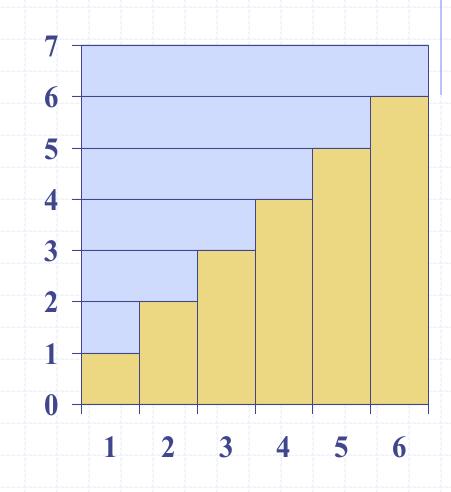
return m
```

Arithmetic Progression

The running time of MaxsubFaster is

$$O(1+2+...+n)$$

- □ The sum of the first n integers is n(n + 1)/2
 - There is a simple visual proof of this fact
- Thus, algorithm
 MaxsubFaster runs in
 O(n²) time



A Linear-Time Algorithm

Instead of computing prefix sum $S_t = s_{1,t}$, let us compute a maximum suffix sum, M_t , which is the maximum of 0 and the maximum $s_{i,t}$ for j = 1,..., t.

$$M_t = \max\{0, \max_{j=1,\dots,t}\{s_{j,t}\}\}$$

- $_{\rm o}$ if $M_{\rm t}$ > 0, then it is the summation value for a maximum subarray that ends at t, and if $M_{\rm t}$ = 0, then we can safely ignore any subarray that ends at t.
- □ if we know all the M_t values, for t = 1, 2, ..., n, then the solution to the maximum subarray problem would simply be the maximum of all these values.

A Linear-Time Algorithm, cont.

□ for $t \ge 2$, if we have a maximum subarray that ends at t, and it has a positive sum, then it is either A[t : t] or it is made up of the maximum subarray that ends at t − 1 plus A[t]. So we can define $M_0 = 0$ and

$$M_t = \max\{0, M_{t-1} + A[t]\}$$

- □ If this were not the case, then we could make a subarray of even larger sum by swapping out the one we chose to end at t − 1 with the maximum one that ends at t − 1, which would contradict the fact that we have the maximum subarray that ends at t.
- □ Also, if taking the value of maximum subarray that ends at t-1 and adding A[t] makes this sum no longer be positive, then $M_t = 0$, for there is no subarray that ends at t with a positive summation.

A Linear-Time Algorithm, cont.

```
Algorithm MaxsubFastest(A):

Input: An n-element array A of numbers, indexed from 1 to n.

Output: The maximum subarray sum of array A.

M_0 \leftarrow 0 // the initial prefix maximum

for t \leftarrow 1 to n do

M_t \leftarrow \max\{0, M_{t-1} + A[t]\}

m \leftarrow 0 // the maximum found so far

for t \leftarrow 1 to n do

m \leftarrow \max\{m, M_t\}

return m
```

The MaxsubFastest algorithm consists of two loops,
 which each iterate exactly n times and take O(1) time in each iteration. Thus, the total running time of the MaxsubFastest algorithm is O(n).

Math you need to Review

- Summations
- Powers
- Logarithms
- Proof techniques
- Basic probability

Properties of powers:

$$a^{(b+c)} = a^b a^c$$
 $a^{bc} = (a^b)^c$
 $a^b / a^c = a^{(b-c)}$
 $b = a^{\log_a b}$
 $b^c = a^{c*\log_a b}$

Properties of logarithms:

$$log_b(xy) = log_bx + log_by$$

 $log_b(x/y) = log_bx - log_by$
 $log_bxa = alog_bx$
 $log_ba = log_xa/log_xb$

Relatives of Big-Oh

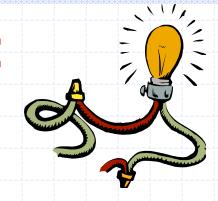
big-Omega

• f(n) is $\Omega(g(n))$ if there is a constant c > 0and an integer constant $n_0 \ge 1$ such that $f(n) \ge c g(n)$ for $n \ge n_0$

big-Theta

■ f(n) is $\Theta(g(n))$ if there are constants c' > 0 and c'' > 0 and an integer constant $n_0 \ge 1$ such that $c'g(n) \le f(n) \le c''g(n)$ for $n \ge n_0$

Intuition for Asymptotic Notation



big-Oh

 f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

big-Omega

• f(n) is $\Omega(g(n))$ if f(n) is asymptotically greater than or equal to g(n)

big-Theta

f(n) is ⊕(g(n)) if f(n) is asymptotically equal to g(n)

Example Uses of the Relatives of Big-Oh

• $5n^2$ is $\Omega(n^2)$

f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \ g(n)$ for $n \ge n_0$

let c = 5 and $n_0 = 1$

• $5n^2$ is $\Omega(n)$

f(n) is $\Omega(g(n))$ if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \ge c \ g(n)$ for $n \ge n_0$

let c = 1 and $n_0 = 1$

f(n) is $\Theta(g(n))$ if it is $\Omega(n^2)$ and $O(n^2)$. We have already seen the former, for the latter recall that f(n) is O(g(n)) if there is a constant c > 0 and an integer constant $n_0 \ge 1$ such that $f(n) \le c g(n)$ for $n \ge n_0$

Let
$$c = 5$$
 and $n_0 = 1$

Informally:

Informally:

▶ $g \in O(f)$ if g is bounded above by a constant multiple of f (for sufficiently large values of n).

Informally:

- ▶ $g \in O(f)$ if g is bounded above by a constant multiple of f (for sufficiently large values of n).
- $g \in O(f)$ if "g grows no faster than (a constant multiple of) f."

Informally:

- ▶ $g \in O(f)$ if g is bounded above by a constant multiple of f (for sufficiently large values of n).
- ▶ $g \in O(f)$ if "g grows no faster than (a constant multiple of) f."
- ▶ $g \in O(f)$ if the ratio g/f is bounded above by a constant (for sufficiently values of n).

Formally:

Formally:

▶ $g \in O(f)$ if and only if:

$$\exists_{C>0}\ \exists_{n_0>0}\ \forall_{n>n_0}\ g(n)\leq C\cdot f(n).$$

Formally:

▶ $g \in O(f)$ if and only if:

$$\exists_{C>0}\ \exists_{n_0>0}\ \forall_{n>n_0}\ g(n)\leq C\cdot f(n).$$

▶ Equivalently: $g \in O(f)$ if and only if:

$$\exists_{C>0}\ \exists_{n_0>0}\ \forall_{n>n_0}\ \frac{g(n)}{f(n)}\leq C.$$

Formally:

▶ $g \in O(f)$ if and only if:

$$\exists_{C>0}\ \exists_{n_0>0}\ \forall_{n>n_0}\ g(n)\leq C\cdot f(n).$$

▶ Equivalently: $g \in O(f)$ if and only if:

$$\exists_{C>0}\ \exists_{n_0>0}\ \forall_{n>n_0}\ \frac{g(n)}{f(n)}\leq C.$$

▶ Sometimes we write: g = O(f) rather than $g \in O(f)$

Example 1: f(n) = n, g(n) = 1000n: $g \in O(f)$.

Example 1: f(n) = n, g(n) = 1000n: $g \in O(f)$.

Proof:

Example 1: f(n) = n, g(n) = 1000n: $g \in O(f)$.

Proof: Let C = 1000. Then $g(n) \le C \cdot f(n)$ for all n.

Example 2:
$$f(n) = n^2$$
, $g(n) = n^{3/2}$: $g \in O(f)$.

Example 2:
$$f(n) = n^2$$
, $g(n) = n^{3/2}$: $g \in O(f)$.

Proof:

Example 2:
$$f(n) = n^2$$
, $g(n) = n^{3/2}$: $g \in O(f)$.

Proof: $\lim_{n\to\infty} \frac{g(n)}{f(n)} = 0$.

Example 2:
$$f(n) = n^2$$
, $g(n) = n^{3/2}$: $g \in O(f)$.

Proof: $\lim_{n\to\infty} \frac{g(n)}{f(n)} = 0$.

Hence for any C > 0 the ratio is less than C as long as n is sufficiently large.

Example 2:
$$f(n) = n^2$$
, $g(n) = n^{3/2}$: $g \in O(f)$.

Proof: $\lim_{n\to\infty} \frac{g(n)}{f(n)} = 0$. Hence for any C > 0 the ratio is less

Hence for any C > 0 the ratio is less than C as long as n is sufficiently large. (Of course, how large n must be to be "sufficiently large" depends on C).

Example 2:
$$f(n) = n^2$$
, $g(n) = n^{3/2}$: $g \in O(f)$.

Proof: $\lim_{n\to\infty}\frac{g(n)}{f(n)}=0$. Hence for any C>0 the ratio is less than C as long as n is sufficiently large. (Of course, how large n must be to be "sufficiently large" depends on C).

Alternate Proof:

Example 2:
$$f(n) = n^2$$
, $g(n) = n^{3/2}$: $g \in O(f)$.

Proof: $\lim_{n\to\infty}\frac{g(n)}{f(n)}=0$. Hence for any C>0 the ratio is less than C as long as n is sufficiently large. (Of course, how large n must be to be "sufficiently large" depends on C).

Alternate Proof: If $n \ge 1$, $n^{1/2} \ge 1$, so $n^{3/2} \le n^2$.

Example 2:
$$f(n) = n^2$$
, $g(n) = n^{3/2}$: $g \in O(f)$.

Proof: $\lim_{n\to\infty}\frac{g(n)}{f(n)}=0$. Hence for any C>0 the ratio is less than C as long as n is sufficiently large. (Of course, how large n must be to be "sufficiently large" depends on C).

Alternate Proof: If $n \ge 1$, $n^{1/2} \ge 1$, so $n^{3/2} \le n^2$. Hence we can choose C = 1 and $n_0 = 1$.

Example 3:
$$f(n) = n^3$$
, $g(n) = n^4$: $g \notin O(f)$.

Example 3:
$$f(n) = n^3$$
, $g(n) = n^4$: $g \notin O(f)$.

Proof:

Example 3:
$$f(n) = n^3$$
, $g(n) = n^4$: $g \notin O(f)$.

Proof:
$$\lim_{n\to\infty} \frac{g(n)}{f(n)} = \infty$$
.

Example 3:
$$f(n) = n^3$$
, $g(n) = n^4$: $g \notin O(f)$.

Proof: $\lim_{n\to\infty} \frac{g(n)}{f(n)} = \infty$.

Hence there is no C > 0 such that $g(n) \le C \cdot f(n)$ for sufficiently large n.

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 + 23n + 2$: $g \in O(f)$.

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 + 23n + 2$: $g \in O(f)$.

Proof:

Example 4: $f(n) = n^2$, $g(n) = 5n^2 + 23n + 2$: $g \in O(f)$.

Proof: If $n \ge 1$, then $n \le n^2$ and $1 \le n^2$.

Example 4: $f(n) = n^2$, $g(n) = 5n^2 + 23n + 2$: $g \in O(f)$.

Proof: If $n \ge 1$, then $n \le n^2$ and $1 \le n^2$. Hence:

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 + 23n + 2$: $g \in O(f)$.

Proof: If $n \ge 1$, then $n \le n^2$ and $1 \le n^2$. Hence:

$$g(n) = 5n^2 + 23n + 2$$

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 + 23n + 2$: $g \in O(f)$.

Proof: If $n \ge 1$, then $n \le n^2$ and $1 \le n^2$. Hence:

$$g(n) = 5n^2 + 23n + 2$$

$$\leq 5n^2 + 23n^2 + 2n^2$$

Examples of *O*-notation:

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 + 23n + 2$: $g \in O(f)$.

Proof: If $n \ge 1$, then $n \le n^2$ and $1 \le n^2$. Hence:

$$g(n) = 5n^{2} + 23n + 2$$

$$\leq 5n^{2} + 23n^{2} + 2n^{2}$$

$$\leq 30n^{2}$$

Examples of *O*-notation:

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 + 23n + 2$: $g \in O(f)$.

Proof: If $n \ge 1$, then $n \le n^2$ and $1 \le n^2$. Hence:

$$g(n) = 5n^{2} + 23n + 2$$

$$\leq 5n^{2} + 23n^{2} + 2n^{2}$$

$$\leq 30n^{2}$$

$$= 30f(n)$$

Examples of *O*-notation:

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 + 23n + 2$: $g \in O(f)$.

Proof: If $n \ge 1$, then $n \le n^2$ and $1 \le n^2$. Hence:

$$g(n) = 5n^{2} + 23n + 2$$

$$\leq 5n^{2} + 23n^{2} + 2n^{2}$$

$$\leq 30n^{2}$$

$$= 30f(n)$$

So we can take C = 30, $n_0 = 1$.

▶ *o* ('little oh"):

More asymptotic notation:

- o ("little oh"), Ω ("big Omega")
 - ▶ *o* ('little oh"):

$$g \in o(f)$$
 if and only if $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$.

▶ *o* ('little oh"):

$$g \in o(f)$$
 if and only if $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$.

Ω ("big Omega") (or just "Omega")

▶ *o* ('little oh"):

$$g \in o(f)$$
 if and only if $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$.

 \triangleright Ω ("big Omega") (or just "Omega")

$$g \in \Omega(f)$$
 if and only if $\exists_{C>0} \exists_{n_0>0} \forall_{n>n_0} g(n) \geq C \cdot f(n)$.

▶ *o* ('little oh"):

$$g \in o(f)$$
 if and only if $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$.

 \triangleright Ω ("big Omega") (or just "Omega")

$$g \in \Omega(f)$$
 if and only if $\exists_{C>0} \exists_{n_0>0} \forall_{n>n_0} g(n) \geq C \cdot f(n)$.

Equivalently:

▶ o ('little oh"):

$$g \in o(f)$$
 if and only if $\lim_{n \to \infty} \frac{g(n)}{f(n)} = 0$.

 \triangleright Ω ("big Omega") (or just "Omega")

$$g \in \Omega(f)$$
 if and only if $\exists_{C>0} \exists_{n_0>0} \forall_{n>n_0} g(n) \geq C \cdot f(n)$.

Equivalently:

$$g \in \Omega(f)$$
 if and only if $\exists_{C>0} \exists_{n_0>0} \forall_{n>n_0} \frac{g(n)}{f(n)} \geq C$.

One more definition:

 Θ ("Theta")

One more definition:

$$\Theta$$
 ("Theta")

▶ $g \in \Theta(f)$ if and only if:

$$g \in O(f)$$
 and $g \in \Omega(f)$.

One more definition:

$$\Theta$$
 ("Theta")

▶ $g \in \Theta(f)$ if and only if:

$$g \in O(f)$$
 and $g \in \Omega(f)$.

▶ Equivalently, $g \in \Theta(f)$ if and only if:

$$\exists_{C_1>0}\ \exists_{C_2>0}\ \exists_{n_0>0}\ \forall_{n>n_0}\ C_1\leq \frac{g(n)}{f(n)}\leq C_2.$$

Example 1: f(n) = n, g(n) = 1000n.

Example 1: f(n) = n, g(n) = 1000n.

$$g \in \Omega(f)$$
, $g \in \Theta(f)$

Example 1: f(n) = n, g(n) = 1000n.

$$g \in \Omega(f)$$
, $g \in \Theta(f)$

To see that $g \in \Omega(f)$, we can take C = 1.

Example 1: f(n) = n, g(n) = 1000n.

$$g \in \Omega(f)$$
, $g \in \Theta(f)$

To see that $g \in \Omega(f)$, we can take C = 1.

Then $g(n) = 1000 \cdot n > 1 \cdot n = C \cdot f(n)$.

Example 1: f(n) = n, g(n) = 1000n.

$$g \in \Omega(f)$$
, $g \in \Theta(f)$

To see that $g \in \Omega(f)$, we can take C = 1.

Then
$$g(n) = 1000 \cdot n > 1 \cdot n = C \cdot f(n)$$
.

To see that $g \in \Theta(f)$, we could argue that $g \in O(f)$ (shown earlier) and $g \in \Omega(f)$ (shown above).

Example 1: f(n) = n, g(n) = 1000n.

$$g \in \Omega(f)$$
, $g \in \Theta(f)$

To see that $g \in \Omega(f)$, we can take C = 1.

Then
$$g(n) = 1000 \cdot n > 1 \cdot n = C \cdot f(n)$$
.

To see that $g \in \Theta(f)$, we could argue that $g \in O(f)$ (shown earlier) and $g \in \Omega(f)$ (shown above).

Or we can take $C_1 = 1$, $C_2 = 1000$. Then

$$C_1 \leq \frac{g(n)}{f(n)} \leq C_2.$$

Example 2:
$$f(n) = n^2$$
, $g(n) = n^{3/2}$:

Example 2:
$$f(n) = n^2$$
, $g(n) = n^{3/2}$:

$$g \in o(f)$$

Example 2:
$$f(n) = n^2$$
, $g(n) = n^{3/2}$:

$$g \in o(f)$$

Because $\lim_{n\to\infty} \frac{g(n)}{f(n)} = 0$.

Example 3:
$$f(n) = n^3$$
, $g(n) = n^4$:

Example 3:
$$f(n) = n^3$$
, $g(n) = n^4$:

$$g \in \Omega(f)$$

Example 3:
$$f(n) = n^3$$
, $g(n) = n^4$:

$$g \in \Omega(f)$$

Because $\lim_{n\to\infty} \frac{g(n)}{f(n)} = \infty$, so we can choose any C we want.

Example 4: $f(n) = n^2$, $g(n) = 5n^2 - 23n + 2$:

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 - 23n + 2$:

$$g \in \Omega(f)$$
.

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 - 23n + 2$:

$$g \in \Omega(f)$$
.

Proof:

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 - 23n + 2$:

$$g \in \Omega(f)$$
.

Proof: If $n \ge 23$, then $23n \le n^2$.

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 - 23n + 2$:

$$g \in \Omega(f)$$
.

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 - 23n + 2$:

$$g \in \Omega(f)$$
.

$$g(n) = 5n^2 - 23n + 2$$

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 - 23n + 2$:

$$g \in \Omega(f)$$
.

$$g(n) = 5n^2 - 23n + 2$$

 $\geq 5n^2 - n^2$

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 - 23n + 2$:

$$g \in \Omega(f)$$
.

$$g(n) = 5n^2 - 23n + 2$$

$$\geq 5n^2 - n^2$$

$$\geq 4n^2$$

Examples of Asymptotic notation

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 - 23n + 2$: $g \in \Omega(f)$.

Proof: If $n \ge 23$, then $23n \le n^2$. Hence if $n \ge 23$:

$$g(n) = 5n^2 - 23n + 2$$

$$\geq 5n^2 - n^2$$

$$\geq 4n^2$$

$$= 4f(n)$$

Examples of Asymptotic notation

Example 4:
$$f(n) = n^2$$
, $g(n) = 5n^2 - 23n + 2$: $g \in \Omega(f)$.

Proof: If $n \ge 23$, then $23n \le n^2$. Hence if $n \ge 23$:

$$g(n) = 5n^2 - 23n + 2$$

$$\geq 5n^2 - n^2$$

$$\geq 4n^2$$

$$= 4f(n)$$

So we can take C = 4, $n_0 = 23$.

Example 5: $\ln n = o(n)$

Example 5: $\ln n = o(n)$

Proof:

Example 5: $\ln n = o(n)$

Proof:

Examine the ratio $\frac{\ln n}{n}$ as $n \to \infty$.

Example 5: $\ln n = o(n)$

Proof:

Examine the ratio $\frac{\ln n}{n}$ as $n \to \infty$.

If we try to evaluate the limit directly, we obtain the "indeterminate form" $\frac{\infty}{\infty}$.

Example 5: $\ln n = o(n)$

Proof:

Examine the ratio $\frac{\ln n}{n}$ as $n \to \infty$.

If we try to evaluate the limit directly, we obtain the "indeterminate form" $\frac{\infty}{\infty}$.

We need to apply L'Hôpital's rule (from calculus).

Example 5: $\ln n = o(n)$

Proof:

Examine the ratio $\frac{\ln n}{n}$ as $n \to \infty$.

If we try to evaluate the limit directly, we obtain the "indeterminate form" $\frac{\infty}{\infty}$.

We need to apply L'Hôpital's rule (from calculus).

(Continued on next slide)

Example 5, continued: $\ln n = o(n)$

L'Hôpital's rule: If the ratio of limits

$$\frac{\lim_{n\to\infty}g(n)}{\lim_{n\to\infty}f(n)}$$

is an indeterminate form (i.e., ∞/∞ or 0/0), then

$$\lim_{n\to\infty}\frac{g(n)}{f(n)}=\lim_{n\to\infty}\frac{g'(n)}{f'(n)}$$

where f' and g' are, respectively, the derivatives of f and g.

$$\ln n = o(n)$$

Let
$$f(n) = n$$
, $g(n) = \ln n$.

$$\ln n = o(n)$$

Let
$$f(n) = n$$
, $g(n) = \ln n$.

Then f'(n) = 1, g'(n) = 1/n.

$$\ln n = o(n)$$

Let f(n) = n, $g(n) = \ln n$.

Then f'(n) = 1, g'(n) = 1/n.

$$\ln n = o(n)$$

Let
$$f(n) = n$$
, $g(n) = \ln n$.

Then
$$f'(n) = 1$$
, $g'(n) = 1/n$.

$$\lim_{n\to\infty}\frac{g(n)}{f(n)} = \lim_{n\to\infty}\frac{g'(n)}{f'(n)}$$

$$\ln n = o(n)$$

Let
$$f(n) = n$$
, $g(n) = \ln n$.

Then
$$f'(n) = 1$$
, $g'(n) = 1/n$.

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{g'(n)}{f'(n)}$$
$$= \lim_{n \to \infty} \frac{1/n}{1}$$

$$\ln n = o(n)$$

Let
$$f(n) = n$$
, $g(n) = \ln n$.

Then
$$f'(n) = 1$$
, $g'(n) = 1/n$.

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{g'(n)}{f'(n)}$$

$$= \lim_{n \to \infty} \frac{1/n}{1}$$

$$= \lim_{n \to \infty} \frac{1}{n}$$

$$\ln n = o(n)$$

Let
$$f(n) = n$$
, $g(n) = \ln n$.

Then
$$f'(n) = 1$$
, $g'(n) = 1/n$.

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{g'(n)}{f'(n)}$$

$$= \lim_{n \to \infty} \frac{1/n}{1}$$

$$= \lim_{n \to \infty} \frac{1}{n}$$

$$= 0$$

$$\ln n = o(n)$$

Let
$$f(n) = n$$
, $g(n) = \ln n$.

Then
$$f'(n) = 1$$
, $g'(n) = 1/n$.

By L'Hôpital's rule:

$$\lim_{n \to \infty} \frac{g(n)}{f(n)} = \lim_{n \to \infty} \frac{g'(n)}{f'(n)}$$

$$= \lim_{n \to \infty} \frac{1/n}{1}$$

$$= \lim_{n \to \infty} \frac{1}{n}$$

$$= 0.$$

Hence g(n) = o(f(n)).

Sums, Summations

- Sums, Summations
- ► Logarithms, Exponents Floors, Ceilings, Harmonic Numbers

- Sums, Summations
- ► Logarithms, Exponents Floors, Ceilings, Harmonic Numbers
- Proof Techniques

- Sums, Summations
- ► Logarithms, Exponents Floors, Ceilings, Harmonic Numbers
- Proof Techniques
- Basic Probability

$$\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + \cdots + f(b).$$

Summation notation:

$$\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + \cdots + f(b).$$

► Special cases:

$$\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + \cdots + f(b).$$

- Special cases:
 - ▶ What if a = b?

$$\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + \cdots + f(b).$$

- Special cases:
 - ▶ What if a = b? f(a)

$$\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + \cdots + f(b).$$

- Special cases:
 - ▶ What if a = b? f(a)
 - ▶ What if a > b?

$$\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + \cdots + f(b).$$

- Special cases:
 - ▶ What if a = b? f(a)
 - What if a > b?

$$\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + \cdots + f(b).$$

- Special cases:
 - ▶ What if a = b? f(a)
 - What if a > b?
- ▶ If $S = \{s_1, ..., s_n\}$ is a finite set:

$$\sum_{i=a}^{b} f(i) = f(a) + f(a+1) + \cdots + f(b).$$

- Special cases:
 - ▶ What if a = b? f(a)
 - What if a > b? 0
- ▶ If $S = \{s_1, \ldots, s_n\}$ is a finite set:

$$\sum_{x\in S} f(x) = f(s_1) + f(s_2) + \cdots + f(s_n).$$

Geometric sum

Geometric sum

Geometric sum:

Geometric sum

Geometric sum:

$$\sum_{i=0}^{n} a^{i} = 1 + a^{1} + a^{2} + \dots + a^{n} = \frac{1 - a^{n+1}}{1 - a},$$

provided that $a \neq 1$.

Geometric sum

▶ Geometric sum:

$$\sum_{i=0}^{n} a^{i} = 1 + a^{1} + a^{2} + \dots + a^{n} = \frac{1 - a^{n+1}}{1 - a},$$

provided that $a \neq 1$.

▶ Previous formula holds for a = 0 because $a^0 = 1$ even when a = 0.

Geometric sum

Geometric sum:

$$\sum_{i=0}^{n} a^{i} = 1 + a^{1} + a^{2} + \dots + a^{n} = \frac{1 - a^{n+1}}{1 - a},$$

provided that $a \neq 1$.

- ▶ Previous formula holds for a = 0 because $a^0 = 1$ even when a = 0.
- Special case of geometric sum:

Geometric sum

Geometric sum:

$$\sum_{i=0}^{n} a^{i} = 1 + a^{1} + a^{2} + \dots + a^{n} = \frac{1 - a^{n+1}}{1 - a},$$

provided that $a \neq 1$.

- Previous formula holds for a = 0 because $a^0 = 1$ even when a = 0.
- Special case of geometric sum:

$$\sum_{i=0}^{n} 2^{i} = 1 + 2 + 4 + 8 + \dots + 2^{n} = 2^{n+1} - 1.$$

From the previous slide:

$$\sum_{i=0}^{n} a^{i} = 1 + a^{1} + a^{2} + \dots + a^{n} = \frac{1 - a^{n+1}}{1 - a},$$

provided that $a \neq 1$.

From the previous slide:

$$\sum_{i=0}^{n} a^{i} = 1 + a^{1} + a^{2} + \dots + a^{n} = \frac{1 - a^{n+1}}{1 - a},$$

provided that $a \neq 1$.

▶ If |a| < 1, we can take the limit as $n \to \infty$:

From the previous slide:

$$\sum_{i=0}^{n} a^{i} = 1 + a^{1} + a^{2} + \dots + a^{n} = \frac{1 - a^{n+1}}{1 - a},$$

provided that $a \neq 1$.

▶ If |a| < 1, we can take the limit as $n \to \infty$:

$$\sum_{i=0}^{\infty} a^i = 1 + a^1 + a^2 + \dots = \frac{1}{1-a},$$

From the previous slide:

$$\sum_{i=0}^{n} a^{i} = 1 + a^{1} + a^{2} + \dots + a^{n} = \frac{1 - a^{n+1}}{1 - a},$$

provided that $a \neq 1$.

▶ If |a| < 1, we can take the limit as $n \to \infty$:

$$\sum_{i=0}^{\infty} a^i = 1 + a^1 + a^2 + \dots = \frac{1}{1-a},$$

Special case of infinite geometric sum:

From the previous slide:

$$\sum_{i=0}^{n} a^{i} = 1 + a^{1} + a^{2} + \dots + a^{n} = \frac{1 - a^{n+1}}{1 - a},$$

provided that $a \neq 1$.

▶ If |a| < 1, we can take the limit as $n \to \infty$:

$$\sum_{i=0}^{\infty} a^i = 1 + a^1 + a^2 + \dots = \frac{1}{1-a},$$

Special case of infinite geometric sum:

$$\sum_{i=1}^{\infty} \frac{1}{2^i} = 1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots = 2.$$

► Sum of first *n* integers

▶ Sum of first *n* integers

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2} = \Theta(n^{2})$$

▶ Sum of first *n* integers

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2} = \Theta(n^{2})$$

Sum of first n squares

Sum of first n integers

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2} = \Theta(n^2)$$

Sum of first n squares

$$\sum_{i=1}^{n} i^2 = 1 + 4 + 9 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6} = \Theta(n^3)$$

Sum of first n integers

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2} = \Theta(n^{2})$$

► Sum of first *n* squares

$$\sum_{i=1}^{n} i^2 = 1 + 4 + 9 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6} = \Theta(n^3)$$

▶ In general, for any fixed positive integer k:

Sum of first n integers

$$\sum_{i=1}^{n} i = 1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2} = \Theta(n^{2})$$

► Sum of first *n* squares

$$\sum_{i=1}^{n} i^2 = 1 + 4 + 9 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6} = \Theta(n^3)$$

▶ In general, for any fixed positive integer k:

$$\sum_{k=1}^{n} i^{k} = 1 + 2^{k} + 3^{k} + \dots + n^{k} = \Theta\left(n^{k+1}\right)$$

Definition: $\log_b x = y$ if and only if $b^y = x$.

Definition: $\log_b x = y$ if and only if $b^y = x$.

Some useful properties:

Definition: $\log_b x = y$ if and only if $b^y = x$.

Some useful properties:

1.
$$\log_b 1 = 0$$
.

$$2. \log_b b^a = a.$$

3.
$$\log_b(xy) = \log_b x + \log_b y.$$

$$4. \log_b(x^a) = a \log_b x.$$

$$5. x^{\log_b y} = v^{\log_b x}.$$

6.
$$\log_x b = \frac{1}{\log_b x}$$
.

7.
$$\log_a x = \frac{\log_b x}{\log_b a}$$
.

8.
$$\log_a x = (\log_b x)(\log_a b)$$
.

Definition: $\log_b x = y$ if and only if $b^y = x$.

Some useful properties:

1.
$$\log_b 1 = 0$$
.

$$5. x^{\log_b y} = y^{\log_b x}.$$

$$2. \log_b b^a = a.$$

6.
$$\log_x b = \frac{1}{\log_b x}$$
.

3.
$$\log_b(xy) = \log_b x + \log_b y.$$

7.
$$\log_a x = \frac{\log_b x}{\log_b a}$$
.

$$4. \log_b(x^a) = a \log_b x.$$

8.
$$\log_a x = (\log_b x)(\log_a b).$$

Exercise: Prove the above properties.

Example (#2): Prove $\log_b b^a = a$.

Example (#2): Prove $\log_b b^a = a$.

Solution: Let $y = \log_b b^a$

```
Example (#2): Prove \log_b b^a = a.
```

Solution: Let $y = \log_b b^a$

 $b^y = b^a$ [by definition of log]

```
Example (#2): Prove \log_b b^a = a.

Solution: Let y = \log_b b^a

b^y = b^a [by definition of \log]

y = a
```

Special Notations:

Special Notations:

$$\ln x = \log_e x \ (e = 2.71828...)$$

Special Notations:

- $In x = log_e x (e = 2.71828...)$

Special Notations:

- $In x = log_e x (e = 2.71828...)$

Some conversions (from Rules #7 and #8 on previous slides):

Special Notations:

- $In x = log_e x (e = 2.71828...)$

Some conversions (from Rules #7 and #8 on previous slides):

$$In x = (\log_2 x)(\log_e 2) = 0.693 \lg x.$$

Special Notations:

- $In x = log_e x (e = 2.71828...)$

Some conversions (from Rules #7 and #8 on previous slides):

- $\ln x = (\log_2 x)(\log_e 2) = 0.693 \lg x.$
- $\lg x = \frac{\log_e x}{\log_e 2} = \frac{\ln x}{0.693} = 1.44 \ln x.$

Floors and ceilings

Floors and ceilings

▶ $|x| = \text{largest integer} \le x$. (Read as Floor of x)

Floors and ceilings

- ▶ $|x| = \text{largest integer} \le x$. (Read as Floor of x)
- ▶ [x] = smallest integer $\ge x$ (Read as Ceiling of x)

Factorials

 $n! = 1 \cdot 2 \cdot \cdot \cdot n$

Factorials

- $n! = 1 \cdot 2 \cdot \cdot \cdot n$
- ▶ *n*! represents the number of distinct permutations of *n* objects.

Factorials

- $n! = 1 \cdot 2 \cdot \cdot \cdot n$
- ▶ *n*! represents the number of distinct permutations of *n* objects.

 - 2 3 1

 - 3 1 2

 $\binom{n}{k}$ = The number of different ways of choosing k objects from a collection of n objects. (Pronounced "n choose k".)

 $\binom{n}{k}$ = The number of different ways of choosing k objects from a collection of n objects. (Pronounced "n choose k".)

Example: $\binom{5}{2} = 10$

 $\binom{n}{k}$ = The number of different ways of choosing k objects from a collection of n objects. (Pronounced "n choose k".)

Example: $\binom{5}{2} = 10$

```
{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}
```

 $\binom{n}{k} =$ The number of different ways of choosing k objects from a collection of n objects. (Pronounced "n choose k".)

Example: $\binom{5}{2} = 10$

Formula:
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

 $\binom{n}{k}$ = The number of different ways of choosing k objects from a collection of n objects. (Pronounced "n choose k".)

Example:
$$\binom{5}{2} = 10$$

Formula:
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Special cases:
$$\binom{n}{0} = 1$$
, $\binom{n}{1} = n$, $\binom{n}{2} = \frac{n(n-1)}{2}$

The *n*th Harmonic number is the sum:

$$H_n = \sum_{i=1}^n \frac{1}{i}$$

The *n*th Harmonic number is the sum:

$$H_n = \sum_{i=1}^n \frac{1}{i}$$

These numbers go to infinity:

$$\lim_{n\to\infty} H_n = \sum_{i=1}^{\infty} \frac{1}{i} = \infty$$

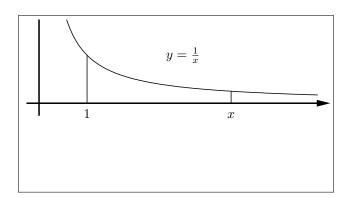
The harmonic numbers are closely related to logs.

The harmonic numbers are closely related to logs. Recall:

$$\ln x = \int_{1}^{x} \frac{1}{t} dt$$

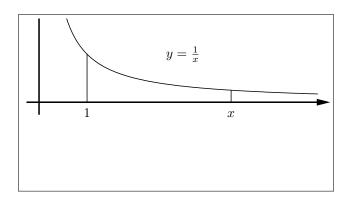
The harmonic numbers are closely related to logs. Recall:

$$\ln x = \int_{1}^{x} \frac{1}{t} dt$$

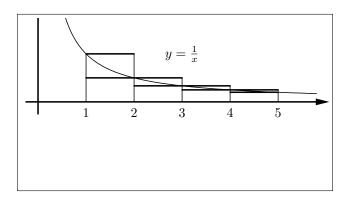


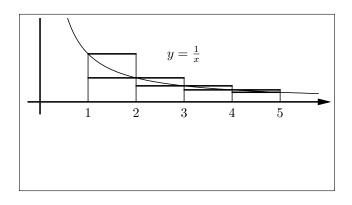
The harmonic numbers are closely related to logs. Recall:

$$\ln x = \int_{1}^{x} \frac{1}{t} dt$$

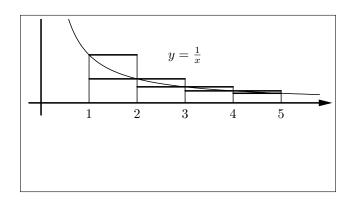


We will show that $H_n = \Theta(\log n)$.



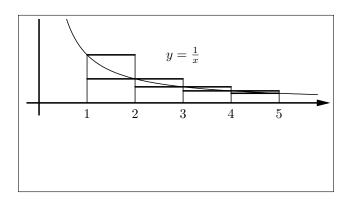


$$\frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n} < \ln n < 1 + \frac{1}{2} + \ldots + \frac{1}{n-1}$$



$$\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < \ln n < 1 + \frac{1}{2} + \dots + \frac{1}{n-1}$$

$$H_n - 1 < \ln n < H_n - \frac{1}{n}$$



$$\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} < \ln n < 1 + \frac{1}{2} + \dots + \frac{1}{n-1}$$

$$H_n - 1 < \ln n < H_n - \frac{1}{n}$$

Hence $\ln n + \frac{1}{n} < H_n < \ln n + 1$, so $H_n = \Theta(\log n)$.

Proof by Example Can be used to prove

- Proof by Example Can be used to prove
 - ▶ A statement of the form "There exists..." is true.

- Proof by Example Can be used to prove
 - ▶ A statement of the form "There exists..." is true.
 - ▶ A statement of the form "For all..." is false.

- Proof by Example Can be used to prove
 - ▶ A statement of the form "There exists..." is true.
 - ▶ A statement of the form "For all..." is false.
 - A statement of the form "If P then Q" is false.

- Proof by Example Can be used to prove
 - ▶ A statement of the form "There exists..." is true.
 - ▶ A statement of the form "For all..." is false.
 - A statement of the form "If P then Q" is false.
- ► Illustration:

- Proof by Example Can be used to prove
 - ▶ A statement of the form "There exists..." is true.
 - ► A statement of the form "For all..." is false.
 - ▶ A statement of the form "If P then Q" is false.
- ▶ Illustration: Consider the statement:

All numbers of the form $2^k - 1$ are prime.

- Proof by Example Can be used to prove
 - ▶ A statement of the form "There exists..." is true.
 - ► A statement of the form "For all..." is false.
 - A statement of the form "If P then Q" is false.
- ▶ Illustration: Consider the statement:

All numbers of the form $2^k - 1$ are prime.

This statement is False: $2^4 - 1 = 15 = 3 \cdot 5$

- Proof by Example Can be used to prove
 - ▶ A statement of the form "There exists..." is true.
 - ► A statement of the form "For all..." is false.
 - A statement of the form "If P then Q" is false.
- ▶ Illustration: Consider the statement:

All numbers of the form $2^k - 1$ are prime.

This statement is False: $2^4 - 1 = 15 = 3 \cdot 5$

Note: The statement can be rewritten as:

If n is an integer of the form $2^k - 1$, then n is prime.

Suppose we want to prove a statement of the form "If P then Q" is true.

Suppose we want to prove a statement of the form "If P then Q" is true.

There are three approaches:

Suppose we want to prove a statement of the form "If P then Q" is true.

There are three approaches:

1. Direct proof: Assume P is true. Show that Q must be true.

Suppose we want to prove a statement of the form "If P then Q" is true.

There are three approaches:

- 1. Direct proof: Assume P is true. Show that Q must be true.
- Indirect proof: Assume Q is false. Show that P must be false.

Suppose we want to prove a statement of the form "If P then Q" is true.

There are three approaches:

- 1. Direct proof: Assume P is true. Show that Q must be true.
- 2. Indirect proof: Assume Q is false. Show that P must be false. This is also known as a proof by contraposition.
- 3. Proof by contradiction: Assume P is true and Q is false. Show that there is a contradiction.

Suppose we want to prove a statement of the form "If P then Q" is true.

There are three approaches:

- 1. Direct proof: Assume P is true. Show that Q must be true.
- 2. Indirect proof: Assume Q is false. Show that P must be false. This is also known as a proof by contraposition.
- 3. Proof by contradiction: Assume P is true and Q is false. Show that there is a contradiction.

See [GT] Section 1.3.3 for examples.

Proof/Justification Techniques: Induction

A technique for proving theorems about the positive (or nonnegative) integers.

- A technique for proving theorems about the positive (or nonnegative) integers.
- Let P(n) be a statement with an integer parameter, n. Mathematical induction is a technique for proving that P(n) is true for all integers \geq some base value b.

- ► A technique for proving theorems about the positive (or nonnegative) integers.
- Let P(n) be a statement with an integer parameter, n. Mathematical induction is a technique for proving that P(n) is true for all integers \geq some base value b.
- ▶ Usually, the base value is 0 or 1.

- A technique for proving theorems about the positive (or nonnegative) integers.
- Let P(n) be a statement with an integer parameter, n. Mathematical induction is a technique for proving that P(n) is true for all integers \geq some base value b.
- ▶ Usually, the base value is 0 or 1.
- ▶ To show P(n) holds for all $n \ge b$, we must show two things:

- ► A technique for proving theorems about the positive (or nonnegative) integers.
- Let P(n) be a statement with an integer parameter, n. Mathematical induction is a technique for proving that P(n) is true for all integers \geq some base value b.
- ▶ Usually, the base value is 0 or 1.
- ▶ To show P(n) holds for all $n \ge b$, we must show two things:
 - 1. Base Case: P(b) is true (where b is the base value).

- ► A technique for proving theorems about the positive (or nonnegative) integers.
- Let P(n) be a statement with an integer parameter, n. Mathematical induction is a technique for proving that P(n) is true for all integers \geq some base value b.
- Usually, the base value is 0 or 1.
- ▶ To show P(n) holds for all $n \ge b$, we must show two things:
 - 1. Base Case: P(b) is true (where b is the base value).
 - 2. Inductive step: If P(k) is true, then P(k+1) is true.

Example: Show that for all $n \ge 1$

$$\sum_{i=1}^{n} i \cdot 2^{i} = (n-1) \cdot 2^{(n+1)} + 2$$

Example: Show that for all $n \ge 1$

$$\sum_{i=1}^{n} i \cdot 2^{i} = (n-1) \cdot 2^{(n+1)} + 2$$

Base Case: (n = 1)

Example: Show that for all $n \ge 1$

$$\sum_{i=1}^{n} i \cdot 2^{i} = (n-1) \cdot 2^{(n+1)} + 2$$

Base Case: (n = 1)

LHS

Example: Show that for all $n \ge 1$

$$\sum_{i=1}^{n} i \cdot 2^{i} = (n-1) \cdot 2^{(n+1)} + 2$$

Base Case: (n = 1)

LHS =
$$\sum_{i=1}^{1} i \cdot 2^{i} = 1 \cdot 2^{1} = 2.$$

Example: Show that for all $n \ge 1$

$$\sum_{i=1}^{n} i \cdot 2^{i} = (n-1) \cdot 2^{(n+1)} + 2$$

Base Case: (n = 1)

LHS =
$$\sum_{i=1}^{1} i \cdot 2^{i} = 1 \cdot 2^{1} = 2$$
.

RHS

Example: Show that for all $n \ge 1$

$$\sum_{i=1}^{n} i \cdot 2^{i} = (n-1) \cdot 2^{(n+1)} + 2$$

Base Case: (n = 1)

LHS =
$$\sum_{i=1}^{1} i \cdot 2^{i} = 1 \cdot 2^{1} = 2$$
.

RHS =
$$(1-1) \cdot 2^{1+1} + 2 = 0 + 2 = 2$$
.

Example: Show that for all n > 1

$$\sum_{i=1}^{n} i \cdot 2^{i} = (n-1) \cdot 2^{(n+1)} + 2$$

Base Case: (n = 1)

LHS =
$$\sum_{i=1}^{1} i \cdot 2^{i} = 1 \cdot 2^{1} = 2$$
.

RHS =
$$(1-1) \cdot 2^{1+1} + 2 = 0 + 2 = 2$$
.

LHS

Example: Show that for all $n \ge 1$

$$\sum_{i=1}^{n} i \cdot 2^{i} = (n-1) \cdot 2^{(n+1)} + 2$$

Base Case:
$$(n = 1)$$

LHS =
$$\sum_{i=1}^{1} i \cdot 2^{i} = 1 \cdot 2^{1} = 2.$$

RHS =
$$(1-1) \cdot 2^{1+1} + 2 = 0 + 2 = 2$$
.

Inductive Step:

Inductive Step:

Assume P(k) is true:

$$\sum_{i=1}^{k} i \cdot 2^{i} = (k-1) \cdot 2^{(k+1)} + 2.$$

Inductive Step:

Assume P(k) is true:

$$\sum_{i=1}^{k} i \cdot 2^{i} = (k-1) \cdot 2^{(k+1)} + 2.$$

Show P(k+1) is true:

$$\sum_{i=1}^{k+1} i \cdot 2^i = k \cdot 2^{(k+2)} + 2.$$

Assume:
$$\sum_{i=1}^{k} i \cdot 2^{i} = (k-1) \cdot 2^{(k+1)} + 2$$
.
Show: $\sum_{i=1}^{k+1} i \cdot 2^{i} = k \cdot 2^{(k+2)} + 2$.

Assume:
$$\sum_{i=1}^{k} i \cdot 2^{i} = (k-1) \cdot 2^{(k+1)} + 2$$
.
Show: $\sum_{i=1}^{k+1} i \cdot 2^{i} = k \cdot 2^{(k+2)} + 2$.

$$\sum_{i=1}^{k+1} i \cdot 2^i$$

Assume:
$$\sum_{i=1}^{k} i \cdot 2^{i} = (k-1) \cdot 2^{(k+1)} + 2$$
.
Show: $\sum_{i=1}^{k+1} i \cdot 2^{i} = k \cdot 2^{(k+2)} + 2$.

$$\sum_{i=1}^{k+1} i \cdot 2^{i} = \sum_{i=1}^{k} i \cdot 2^{i} + (k+1) \cdot 2^{(k+1)}$$

Assume:
$$\sum_{i=1}^{k} i \cdot 2^{i} = (k-1) \cdot 2^{(k+1)} + 2.$$
Show:
$$\sum_{i=1}^{k+1} i \cdot 2^{i} = k \cdot 2^{(k+2)} + 2.$$

$$\sum_{i=1}^{k+1} i \cdot 2^{i} = \sum_{i=1}^{k} i \cdot 2^{i} + (k+1) \cdot 2^{(k+1)}$$

 $= (k-1) \cdot 2^{(k+1)} + 2 + (k+1) \cdot 2^{(k+1)}$

Assume:
$$\sum_{i=1}^{k} i \cdot 2^{i} = (k-1) \cdot 2^{(k+1)} + 2$$
.
Show: $\sum_{i=1}^{k+1} i \cdot 2^{i} = k \cdot 2^{(k+2)} + 2$.

$$\sum_{i=1}^{k+1} i \cdot 2^{i} = \sum_{i=1}^{k} i \cdot 2^{i} + (k+1) \cdot 2^{(k+1)}$$
$$= (k-1) \cdot 2^{(k+1)} + 2 + (k+1) \cdot 2^{(k+1)}$$
$$= 2k \cdot 2^{(k+1)} + 2$$

Assume:
$$\sum_{i=1}^{k} i \cdot 2^{i} = (k-1) \cdot 2^{(k+1)} + 2.$$
Show:
$$\sum_{i=1}^{k+1} i \cdot 2^{i} = k \cdot 2^{(k+2)} + 2.$$

$$\sum_{i=1}^{k+1} i \cdot 2^{i} = \sum_{i=1}^{k} i \cdot 2^{i} + (k+1) \cdot 2^{(k+1)}$$

$$= (k-1) \cdot 2^{(k+1)} + 2 + (k+1) \cdot 2^{(k+1)}$$

$$= (k-1) \cdot 2^{(k+1)} + 2 + (k+1) \cdot 2^{(k+1)}$$

$$= 2k \cdot 2^{(k+1)} + 2$$

$$= k \cdot 2^{(k+2)} + 2$$

Assume:
$$\sum_{i=1}^{k} i \cdot 2^{i} = (k-1) \cdot 2^{(k+1)} + 2.$$
Show:
$$\sum_{i=1}^{k+1} i \cdot 2^{i} = k \cdot 2^{(k+2)} + 2.$$

$$\sum_{i=1}^{k+1} i \cdot 2^{i} = \sum_{i=1}^{k} i \cdot 2^{i} + (k+1) \cdot 2^{(k+1)}$$

 $= 2k \cdot 2^{(k+1)} + 2$

 $= k \cdot 2^{(k+2)} + 2$ QED

 $= (k-1) \cdot 2^{(k+1)} + 2 + (k+1) \cdot 2^{(k+1)}$

▶ Defined in terms of a sample space, S.

- ▶ Defined in terms of a sample space, S.
- Sample space consists of a finite set of outcomes, also called elementary events.

- Defined in terms of a sample space, S.
- Sample space consists of a finite set of outcomes, also called elementary events.
- ► An event is a subset of the sample space. (So an event is a set of outcomes).

- ▶ Defined in terms of a sample space, S.
- Sample space consists of a finite set of outcomes, also called elementary events.
- ► An event is a subset of the sample space. (So an event is a set of outcomes).
- ► Sample space can be infinite, even uncountable. In this course, it will generally be finite.

- Defined in terms of a sample space, S.
- Sample space consists of a finite set of outcomes, also called elementary events.
- ► An event is a subset of the sample space. (So an event is a set of outcomes).
- ► Sample space can be infinite, even uncountable. In this course, it will generally be finite.

Example: (2-coin example.) Flip two coins.

- Defined in terms of a sample space, S.
- Sample space consists of a finite set of outcomes, also called elementary events.
- An event is a subset of the sample space. (So an event is a set of outcomes).
- Sample space can be infinite, even uncountable. In this course, it will generally be finite.

Example: (2-coin example.) Flip two coins.

► Sample space $S = \{HH, HT, TH, TT\}$.

- Defined in terms of a sample space, S.
- Sample space consists of a finite set of outcomes, also called elementary events.
- An event is a subset of the sample space. (So an event is a set of outcomes).
- Sample space can be infinite, even uncountable. In this course, it will generally be finite.

Example: (2-coin example.) Flip two coins.

- ► Sample space $S = \{HH, HT, TH, TT\}$.
- ► The event "first coin is heads" is the subset {HH, HT}.

A probability function is a function $P(\cdot)$ that maps events (subsets of the sample space S) to real numbers such that:

- A probability function is a function $P(\cdot)$ that maps events (subsets of the sample space S) to real numbers such that:
 - 1. $P(\emptyset) = 0$.

- A probability function is a function $P(\cdot)$ that maps events (subsets of the sample space S) to real numbers such that:
 - 1. $P(\emptyset) = 0$.
 - 2. P(S) = 1.

Probability function

- A probability function is a function $P(\cdot)$ that maps events (subsets of the sample space S) to real numbers such that:
 - 1. $P(\emptyset) = 0$.
 - 2. P(S) = 1.
 - 3. For every event A, $0 \le P(A) \le 1$.

Probability function

- A probability function is a function $P(\cdot)$ that maps events (subsets of the sample space S) to real numbers such that:
 - 1. $P(\emptyset) = 0$.
 - 2. P(S) = 1.
 - 3. For every event A, $0 \le P(A) \le 1$.
 - 4. If $A, B \subseteq S$ and $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$.

Probability function

- A probability function is a function $P(\cdot)$ that maps events (subsets of the sample space S) to real numbers such that:
 - 1. $P(\emptyset) = 0$.
 - 2. P(S) = 1.
 - 3. For every event A, $0 \le P(A) \le 1$.
 - 4. If $A, B \subseteq S$ and $A \cap B = \emptyset$, then $P(A \cup B) = P(A) + P(B)$.
- ▶ Note: Property 4 implies that if $A \subseteq B$ then $P(A) \le P(B)$.

For finite sample spaces, this can be simplified:

For finite sample spaces, this can be simplified:

▶ Sample space $S = \{s_1, \ldots, s_k\}$,

For finite sample spaces, this can be simplified:

- ▶ Sample space $S = \{s_1, \ldots, s_k\}$,
- ▶ Each outcome S_i is assigned a probability $P(s_i)$, with

$$\sum_{i=1}^k P(s_i) = 1.$$

For finite sample spaces, this can be simplified:

- ▶ Sample space $S = \{s_1, \ldots, s_k\}$,
- **Each** outcome S_i is assigned a probability $P(s_i)$, with

$$\sum_{i=1}^k P(s_i) = 1.$$

▶ The probability of an event $E \subseteq S$ is:

$$P(E) = \sum_{s_i \in E} P(s_i).$$

For finite sample spaces, this can be simplified:

- ▶ Sample space $S = \{s_1, \ldots, s_k\}$,
- **Each** outcome S_i is assigned a probability $P(s_i)$, with

$$\sum_{i=1}^k P(s_i) = 1.$$

▶ The probability of an event $E \subseteq S$ is:

$$P(E) = \sum_{s_i \in E} P(s_i).$$

Example: (2-coin example, continued). Define

$$P(HH) = P(HT) = P(TH) = P(TT) = \frac{1}{4}$$

For finite sample spaces, this can be simplified:

- ▶ Sample space $S = \{s_1, \ldots, s_k\}$,
- **Each** outcome S_i is assigned a probability $P(s_i)$, with

$$\sum_{i=1}^k P(s_i) = 1.$$

▶ The probability of an event $E \subseteq S$ is:

$$P(E) = \sum_{s_i \in E} P(s_i).$$

Example: (2-coin example, continued). Define

$$P(HH) = P(HT) = P(TH) = P(TT) = \frac{1}{4}$$

Then

$$P(\text{first coin is heads}) = P(\text{HH}) + P(\text{HT}) = \frac{1}{2}.$$

▶ Intuitive definition: a random variable is a variable whose value depends on the outcome of some experiment.

- ▶ Intuitive definition: a random variable is a variable whose value depends on the outcome of some experiment.
- ► Formal definition: a random variable is a function that maps outcomes in a sample space *S* to real numbers.

- ▶ Intuitive definition: a random variable is a variable whose value depends on the outcome of some experiment.
- ► Formal definition: a random variable is a function that maps outcomes in a sample space *S* to real numbers.
- ► Special case: An Indicator variable is a random variable that is always either 0 or 1.

► The expected value, or expectation, of a random variable *X* represents its "average value".

- ► The expected value, or expectation, of a random variable *X* represents its "average value".
- ▶ Formally: Let X be a random variable with a finite set of possible values $V = \{x_1, \dots, x_k\}$. Then

$$E(X) = \sum_{x \in V} x \cdot P(X = x).$$

- ► The expected value, or expectation, of a random variable *X* represents its "average value".
- ▶ Formally: Let X be a random variable with a finite set of possible values $V = \{x_1, \dots, x_k\}$. Then

$$E(X) = \sum_{x \in V} x \cdot P(X = x).$$

Example: (2-coin example, continued). Let X be the number of heads when two coins are thrown. Then

$$E(X) = 0 \cdot P(X=0) + 1 \cdot P(X=1) + 2 \cdot P(X=2)$$

$$= 0 \cdot \left(\frac{1}{4}\right) + 1 \cdot \left(\frac{1}{2}\right) + 2 \cdot \left(\frac{1}{4}\right)$$

$$= 1$$

Example: Throw a single six-sided die. Assume the die is fair, so each possible throw has a probability of 1/6.

Example: Throw a single six-sided die. Assume the die is fair, so each possible throw has a probability of 1/6.

The expected value of the throw is:

$$1 \cdot \frac{1}{6} + 2 \cdot \frac{1}{6} + 3 \cdot \frac{1}{6} + 4 \cdot \frac{1}{6} + 5 \cdot \frac{1}{6} + 6 \cdot \frac{1}{6} = 3.5$$

▶ For any two random variables *X* and *Y*,

$$E(X + Y) = E(X) + E(Y).$$

► For any two random variables X and Y,

$$E(X + Y) = E(X) + E(Y).$$

▶ Proof: see [GT], 1.3.4

► For any two random variables X and Y,

$$E(X+Y)=E(X)+E(Y).$$

- ▶ Proof: see [GT], 1.3.4
- ▶ Very useful, because usually it is easier to compute E(X) and E(Y) and apply the formula than to compute E(X + Y) directly.

► For any two random variables X and Y,

$$E(X + Y) = E(X) + E(Y).$$

- Proof: see [GT], 1.3.4
- ▶ Very useful, because usually it is easier to compute E(X) and E(Y) and apply the formula than to compute E(X + Y) directly.

Example 1: Throw two six-sided dice. Let X be the sum of the values. Then

$$E(X) = E(X_1 + X_2) = E(X_1) + E(X_2) = 3.5 + 3.5 = 7,$$

where X_i is the value on die i (i = 1, 2).

► For any two random variables X and Y,

$$E(X + Y) = E(X) + E(Y).$$

- Proof: see [GT], 1.3.4
- Very useful, because usually it is easier to compute E(X) and E(Y) and apply the formula than to compute E(X + Y) directly.

Example 1: Throw two six-sided dice. Let X be the sum of the values. Then

$$E(X) = E(X_1 + X_2) = E(X_1) + E(X_2) = 3.5 + 3.5 = 7,$$

where X_i is the value on die i (i = 1, 2).

Example 2: Throw 100 six-sided dice. Let Y be the sum of the values. Then

$$E(Y) = 100 \cdot 3.5 = 350.$$

ightharpoonup Two events A_1 and A_2 are independent iff

$$P(A_1 \cap A_2) = P(A_1) \cdot P(A_2).$$

Example: (2-coin example, continued).

ightharpoonup Two events A_1 and A_2 are independent iff

$$P(A_1 \cap A_2) = P(A_1) \cdot P(A_2).$$

Example: (2-coin example, continued). Let

$$A_1$$
 = coin 1 is heads = {HH, HT}
 A_2 = coin 2 is tails = {HT, TT}

ightharpoonup Two events A_1 and A_2 are independent iff

$$P(A_1 \cap A_2) = P(A_1) \cdot P(A_2).$$

Example: (2-coin example, continued). Let

$$A_1$$
 = coin 1 is heads = {HH, HT}
 A_2 = coin 2 is tails = {HT, TT}

Then
$$P(A_1) = \frac{1}{2}$$
, $P(A_2) = \frac{1}{2}$, and

$$P(A_1 \cap A_2) = P(HT) = \frac{1}{4} = P(A_1) \cdot P(A_2).$$

So A_1 and A_2 are independent.

A collection of n events $C = \{A_1, A_2, ..., A_n\}$ is mutually independent (or simply independent) if:

For every subset $\{A_{i_1}, A_{i_2}, \dots A_{i_k}\} \subseteq C$:

$$P(A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdots P(A_{i_k}).$$

A collection of n events $C = \{A_1, A_2, ..., A_n\}$ is mutually independent (or simply independent) if:

For every subset $\{A_{i_1}, A_{i_2}, \dots A_{i_k}\} \subseteq C$:

$$P(A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdots P(A_{i_k}).$$

Example: Suppose we flip 10 coins. Suppose the flips are fair (P(H) = P(T) = 1/2) and independent. Then the probability of any particular sequence of flips (e.g., HHTTTHTHTH) is $1/(2^{10})$.

Example: Probability and counting

Example: Probability and counting

Example: Suppose we flip a coin 10 times. Suppose the flips are fair and independent. What is the probability of getting exactly 7 heads out of the 10 flips?

Example: Suppose we flip a coin 10 times. Suppose the flips are fair and independent. What is the probability of getting exactly 7 heads out of the 10 flips?

Solution:

► The outcomes consist of the set of possible sequences of 10 flips (e.g., HHTTTHTHTH).

Example: Suppose we flip a coin 10 times. Suppose the flips are fair and independent. What is the probability of getting exactly 7 heads out of the 10 flips?

Solution:

- ► The outcomes consist of the set of possible sequences of 10 flips (e.g., HHTTTHTHTH).
- ▶ The probability of each outcome is $1/(2^{10})$.

Example: Suppose we flip a coin 10 times. Suppose the flips are fair and independent. What is the probability of getting exactly 7 heads out of the 10 flips?

Solution:

- ► The outcomes consist of the set of possible sequences of 10 flips (e.g., HHTTTHTHTH).
- ▶ The probability of each outcome is $1/(2^{10})$.
- ▶ The number of successful outcomes is $\binom{10}{7}$.

Example: Suppose we flip a coin 10 times. Suppose the flips are fair and independent. What is the probability of getting exactly 7 heads out of the 10 flips?

Solution:

- ► The outcomes consist of the set of possible sequences of 10 flips (e.g., HHTTTHTHTH).
- ▶ The probability of each outcome is $1/(2^{10})$.
- ▶ The number of successful outcomes is $\binom{10}{7}$.
- ▶ Hence the probability of getting exactly 7 heads is:

$$\frac{\binom{10}{7}}{2^{10}} = \frac{120}{1024} = 0.117.$$

```
v = -\infty
for i = 0 to n-1:
  if A[i] > v:
   v = A[i]
return v
```

```
v = -\infty
for i = 0 to n-1:
    if A[i] > v:
       v = A[i]
return v
```

▶ Worst-case number of comparisons is *n*.

```
v = -∞
for i = 0 to n-1:
    if A[i] > v:
       v = A[i]
return v
```

- ▶ Worst-case number of comparisons is *n*.
- ▶ This can be reduced to n-1

```
v = -∞
for i = 0 to n-1:
    if A[i] > v:
       v = A[i]
return v
```

- ▶ Worst-case number of comparisons is *n*.
- ▶ This can be reduced to n-1
- How many times is the running maximum updated?

```
v = -∞
for i = 0 to n-1:
    if A[i] > v:
       v = A[i]
return v
```

- ▶ Worst-case number of comparisons is *n*.
- ▶ This can be reduced to n-1
- How many times is the running maximum updated?
 - ▶ In the worst case n.

```
v = -\infty
for i = 0 to n-1:
  if A[i] > v:
   v = A[i]
return v
```

- ▶ Worst-case number of comparisons is *n*.
- ▶ This can be reduced to n-1
- How many times is the running maximum updated?
 - ▶ In the worst case n.
 - ▶ What about the average case? ...

- Assume
 - ▶ all possible orderings (permutations) of A are equally likely
 - ▶ all *n* elements of *A* are distinct.

- Assume
 - ▶ all possible orderings (permutations) of A are equally likely
 - all n elements of A are distinct.
- ▶ The running maximum gets updated on iteration i of the loop iff $\max\{A[0], \ldots, A[i]\} = A[i]$.

- Assume
 - ▶ all possible orderings (permutations) of A are equally likely
 - all n elements of A are distinct.
- ▶ The running maximum gets updated on iteration i of the loop iff $\max\{A[0], \ldots, A[i]\} = A[i]$.
- ▶ The probability of this happening is 1/(i+1).

- Assume
 - ▶ all possible orderings (permutations) of A are equally likely
 - all n elements of A are distinct.
- ▶ The running maximum gets updated on iteration i of the loop iff $\max\{A[0], \ldots, A[i]\} = A[i]$.
- ▶ The probability of this happening is 1/(i+1).
- Define indicator variables X_i:

$$X_i = \begin{cases} 1 & \text{if } v \text{ gets updated on iteration } \#i \\ 0 & \text{if } v \text{ does not get updated on iteration } \#i \end{cases}$$

- Assume
 - ▶ all possible orderings (permutations) of A are equally likely
 - all n elements of A are distinct.
- ▶ The running maximum gets updated on iteration i of the loop iff $\max\{A[0], \ldots, A[i]\} = A[i]$.
- ▶ The probability of this happening is 1/(i+1).
- Define indicator variables X_i:

$$X_i = \begin{cases} 1 & \text{if } v \text{ gets updated on iteration } \#i \\ 0 & \text{if } v \text{ does not get updated on iteration } \#i \end{cases}$$

Then
$$E(X_i) = \frac{1}{i+1}$$

- Assume
 - ▶ all possible orderings (permutations) of A are equally likely
 - all n elements of A are distinct.
- ▶ The running maximum gets updated on iteration i of the loop iff $\max\{A[0], \ldots, A[i]\} = A[i]$.
- ▶ The probability of this happening is 1/(i+1).
- Define indicator variables X_i:

$$X_i = \begin{cases} 1 & \text{if } v \text{ gets updated on iteration } \#i \\ 0 & \text{if } v \text{ does not get updated on iteration } \#i \end{cases}$$

Then
$$E(X_i) = \frac{1}{i+1}$$

▶ The total number of times that v gets updated is:

$$X = \sum_{i=0}^{n-1} X_i$$

The expected total number of times that v gets updated is:

E(X)

$$E(X) = E\left(\sum_{i=0}^{n-1} X_i\right)$$

$$E(X) = E\left(\sum_{i=0}^{n-1} X_i\right) = \sum_{i=0}^{n-1} E(X_i)$$

$$E(X) = E\left(\sum_{i=0}^{n-1} X_i\right) = \sum_{i=0}^{n-1} E(X_i) = \sum_{i=0}^{n-1} \frac{1}{i+1}$$

$$E(X) = E\left(\sum_{i=0}^{n-1} X_i\right) = \sum_{i=0}^{n-1} E\left(X_i\right) = \sum_{i=0}^{n-1} \frac{1}{i+1} = \sum_{i=1}^{n} \frac{1}{i}$$

$$E(X) = E\left(\sum_{i=0}^{n-1} X_i\right) = \sum_{i=0}^{n-1} E(X_i) = \sum_{i=0}^{n-1} \frac{1}{i+1} = \sum_{i=1}^{n} \frac{1}{i} = H_n$$

$$E(X) = E\left(\sum_{i=0}^{n-1} X_i\right) = \sum_{i=0}^{n-1} E\left(X_i\right) = \sum_{i=0}^{n-1} \frac{1}{i+1} = \sum_{i=1}^{n} \frac{1}{i} = H_n = O(\log n)$$

The expected total number of times that v gets updated is:

$$E(X) = E\left(\sum_{i=0}^{n-1} X_i\right) = \sum_{i=0}^{n-1} E\left(X_i\right) = \sum_{i=0}^{n-1} \frac{1}{i+1} = \sum_{i=1}^{n} \frac{1}{i} = H_n = O(\log n)$$

It can be shown that

$$H_n = \ln n + \gamma + o(1)$$
, where $\gamma = 0.5772157...$

The expected total number of times that v gets updated is:

$$E(X) = E\left(\sum_{i=0}^{n-1} X_i\right) = \sum_{i=0}^{n-1} E\left(X_i\right) = \sum_{i=0}^{n-1} \frac{1}{i+1} = \sum_{i=1}^{n} \frac{1}{i} = H_n = O(\log n)$$

It can be shown that

$$H_n = \ln n + \gamma + o(1)$$
, where $\gamma = 0.5772157...$

If there are 30,000 elements in the list, the expected update count is about 10.9

The expected total number of times that v gets updated is:

$$E(X) = E\left(\sum_{i=0}^{n-1} X_i\right) = \sum_{i=0}^{n-1} E\left(X_i\right) = \sum_{i=0}^{n-1} \frac{1}{i+1} = \sum_{i=1}^{n} \frac{1}{i} = H_n = O(\log n)$$

It can be shown that

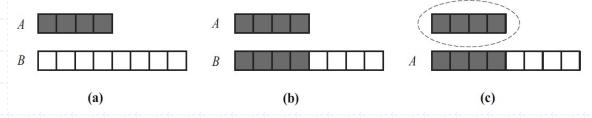
$$H_n = \ln n + \gamma + o(1)$$
, where $\gamma = 0.5772157...$

If there are 30,000 elements in the list, the expected update count is about 10.9

If there are 3,000,000,000 elements in the list, the expected update count is about 22.4

Amortization

- The amortized running time of an operation within a series of operations is the worst-case running time of the series of operations divided by the number of operations.
- Example: A growable array, S. When needing to grow:
 - a. Allocate a new array B of larger capacity.
 - b. Copy A[i] to B[i], for i = 0, ..., n 1, where n is size of A.
 - c. Let A = B, that is, we use B as the array now supporting A.



Growable Array Description

- Let add(e) be the operation that adds element e at the end of the array
- When the array is full, we replace the array with a larger one
- But how large should the new array be?
 - Incremental strategy: increase the size by a constant c
 - Doubling strategy: double the size

```
Algorithm add(e)
  if t = A.length - 1
then
    B \leftarrow new array of
            size ...
     for i \leftarrow 0 to n-1 do
        B[i] \leftarrow A[i]
    A \leftarrow B
  n \leftarrow n + 1
  A[n-1] \leftarrow e
```

Comparison of the Strategies

- We compare the incremental strategy and the doubling strategy by analyzing the total time T(n) needed to perform a series of n add operations
- We assume that we start with an empty list represented by a growable array of size 1
- □ We call amortized time of an add operation the average time taken by an add operation over the series of operations, i.e., T(n)/n

Incremental Strategy Analysis

- ullet Over n add operations, we replace the array k=n/c times, where c is a constant

$$n + c + 2c + 3c + 4c + ... + kc =$$
 $n + c(1 + 2 + 3 + ... + k) =$
 $n + ck(k + 1)/2$

- \square Since c is a constant, T(n) is $O(n + k^2)$, i.e., $O(n^2)$
- Thus, the amortized time of an add operation is

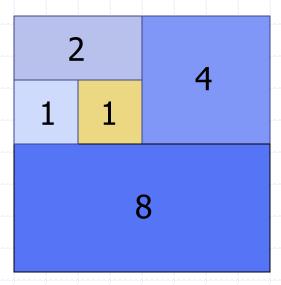
Doubling Strategy Analysis

- □ We replace the array $k = \log_2 n$ times
- \Box The total time T(n) of a series of n push operations is proportional to

$$n+1+2+4+8+...+2^{k} = n+2^{k+1}-1 = 3n-1$$

- \Box T(n) is O(n)
- □ The amortized time of an add operation is O(1)

geometric series



Accounting Method Proof for the Doubling Strategy

- We view the computer as a coin-operated appliance that requires the payment of 1 cyber-dollar for a constant amount of computing time.
- We shall charge each add operation 3 cyber-dollars, that is, it will have an amortized O(1) amortized running time.
 - We over-charge each add operation not causing an overflow 2 cyber-dollars.
 - Think of the 2 cyber-dollars profited in an insertion that does not grow the array as being "stored" at the element inserted.
 - An overflow occurs when the array A has 2ⁱ elements.
 - Thus, doubling the size of the array will require 2 cyber-dollars.
 - These cyber-dollars are at the elements stored in cells 2^{i-1} through $2^{i}-1$.

