CS 162 — Automata Theory — Fall 2015 — Goodrich — Final Exam

Name:		
ID:		
1:		
2:		
3:		
4:		
5:		
6:		
7:		
8:		
9:		
total:		

1. (30 points). Short Answers.
(a) Draw an example of a DFA having just 1 state, over the alphabet $\{0,1\}$ that accepts an infinite number of strings.
(b) Give a definition for regular expression, over an alphabet Σ , including the null string, ε , and to allow for the emptyset symbol, \emptyset .
(c) How can you tell if the language for a DFA is empty or not?

2. (30 points). More Short Answers.	
(a) What is the Church-Turing thesis?	
(b) What is the Halting problem?	
(b) What is the Halting problem?	
(b) What is the Halting problem?	
(b) What is the Halting problem?	
(b) What is the Halting problem?	
(b) What is the Halting problem?	

(c) Draw a Venn diagram that shows the known relationships between the following set of

languages: P, NP, PSPACE, regular languages, decidable languages.

3. (30 points). Draw a DFAs recognizing each of the following languages, over the alphab $\Sigma = \{0, 1\}$.
(a) $\{w \mid w \text{ contains at least three 1's}\}$
(b) $\{w \mid w \text{ contains at exactly two 0's}\}$

(c) $\{w \mid w \text{ contains the substring } 011\}$

- 4. (30 points). Give a context-free grammar (CFG) for each of the following languages, over the alphabet $\Sigma = \{0, 1, 2\}$.
- (a) $\{0^i1^j2^n\mid i,j,n\geq 1 \text{ and } i+j=n\}$

(b) $\{w \mid w = w^R$, that is, w is a palindrome $\}$

5. (30 points). Consider the following context-free grammar:

(a) Give a derivation for the string, (a+a)*a.

(b) Draw a parse tree for the string, (a+a*a).

- 6. (30 points). Pumping Lemma.
- (a) State the Pumping Lemma for regular languages.

(b) Use the Pumping Lemma for regular languages to show that the following language is not regular: $\{0^n1^n\mid n\geq 0\}$.

7. (30 points). Consider the following two languages:

 $\begin{array}{lll} A & = & \{(M,w) \mid M \text{ is a Turing machine and } M \text{ accepts input } w\} \\ H & = & \{(M,w) \mid M \text{ is a Turing machine and } M \text{ halts on input } w\}. \end{array}$

Use the fact that A is undecidable to show that H is undecidable.

- 8. (30 points).
- (a) Define the complexity class, **NP**.
- (b) Define the term "**NP**-complete."
- (c) Define INDEPENDENT-SET as the problem that takes a graph G and an integer k and asks if G contains an independent set of vertices of size k. That is, G contains a set W of vertices of size k such that, for any u and v in W, there is no edge (u,v) in G. Show that INDEPENDENT-SET is **NP**-complete (remember that there are two parts to this). You may assume the **NP**-completeness of either VERTEX-COVER or 3SAT for the sake of this proof.

9. (30 points). Suppose you are given a DFA, A, which recognizes a language, L, and a DFA, B, which recognizes a language, M. Describe an algorithm for using the descriptions of A and B to produce a DFA, C, that recognizes the language L-M, that is each string in L that is not also in M.