Introduction to Finite Automata

Languages
Deterministic Finite Automata
Representations of Automata
Alphabets

• An *alphabet* is any finite set of symbols.
• **Examples:** ASCII, Unicode, \{0,1\} (*binary alphabet*), \{a,b,c\}.
Strings

• The set of strings over an alphabet Σ is the set of lists, each element of which is a member of Σ.

 • Strings shown with no commas, e.g., abc.

• Σ^* denotes this set of strings.

• ϵ stands for the empty string (string of length 0).
Example: Strings

• \{0,1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, \ldots \}

• **Subtlety**: 0 as a string, 0 as a symbol look the same.
 • Context determines the type.
Languages

- A **language** is a subset of Σ^* for some alphabet Σ.
- **Example:** The set of strings of 0’s and 1’s with no two consecutive 1’s.
- $L = \{ \epsilon, 0, 1, 00, 01, 10, 000, 001, 010, 100, 101, 0000, 0001, 0010, 0100, 0101, 1000, 1001, 1010, \ldots \}$
Deterministic Finite Automata

- A formalism for defining languages, consisting of:
 1. A finite set of states \((Q, \text{ typically})\).
 2. An input alphabet \((\Sigma, \text{ typically})\).
 3. A transition function \((\delta, \text{ typically})\).
 4. A start state \((q_0, \text{ in } Q, \text{ typically})\).
 5. A set of final states \((F \subseteq Q, \text{ typically})\).

 • “Final” and “accepting” are synonyms.
The Transition Function

- Takes two arguments: a state and an input symbol.
- \(\delta(q, a) \) = the state that the DFA goes to when it is in state \(q \) and input \(a \) is received.
Graph Representation of DFA’s

- Nodes = states.
- Arcs represent transition function.
 - Arc from state p to state q labeled by all those input symbols that have transitions from p to q.
- Arrow labeled “Start” to the start state.
- Final states indicated by double circles.
Example: Graph of a DFA

Accepts all strings without two consecutive 1’s.

Previous string OK, does not end in 1.

Previous String OK, ends in a single 1.

Consecutive 1’s have been seen.
Alternative Representation:

Transition Table

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>A</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>C</td>
</tr>
</tbody>
</table>

- **Final states** starred
- **Arrow for start state**
- **Rows = states**
- **Columns = input symbols**
Extended Transition Function

• We describe the effect of a string of inputs on a DFA by extending δ to a state and a string.
• Induction on length of string.
• Basis: $\delta(q, \varepsilon) = q$
• Induction: $\delta(q,wa) = \delta(\delta(q,w),a)$
 • w is a string; a is an input symbol.
Extended δ: Intuition

• **Convention:**
 - ... w, x, y, x are strings.
 - $a, b, c, ...$ are single symbols.

• Extended δ is computed for state q and inputs $a_1a_2...a_n$ by following a path in the transition graph, starting at q and selecting the arcs with labels $a_1, a_2, ..., a_n$ in turn.
Example: Extended Delta

\[
\begin{array}{c|cc}
 & 0 & 1 \\
\hline
A & A & B \\
B & A & C \\
C & C & C \\
\end{array}
\]

\[
\delta(B,011) = \delta(\delta(B,01),1) = \delta(\delta(\delta(B,0),1),1) = \delta(\delta(A,1),1) = \delta(B,1) = C
\]
Delta-hat

• Some people denote the extended \(\delta \) with a "hat" to distinguish it from \(\delta \) itself.
• Not needed, because both agree when the string is a single symbol.
• \(\hat{\delta}(q, a) = \delta(\hat{\delta}(q, \epsilon), a) = \delta(q, a) \)

Extended deltas
Language of a DFA

• Automata of all kinds define languages.
• If A is an automaton, L(A) is its language.
• For a DFA A, L(A) is the set of strings labeling paths from the start state to a final state.
• Formally: L(A) = the set of strings w such that \(\delta(q_0, w) \) is in F.
Example: String in a Language

String 101 is in the language of the DFA below. Start at A.
Example: String in a Language

String 101 is in the language of the DFA below.

Follow arc labeled 1.
Example: String in a Language

String 101 is in the language of the DFA below.

Then arc labeled 0 from current state B.
Example: String in a Language

String 101 is in the language of the DFA below.

Finally arc labeled 1 from current state A. Result is an accepting state, so 101 is in the language.
Example – Concluded

- The language of our example DFA is:
 $\{w \mid w \text{ is in } \{0,1\}^* \text{ and } w \text{ does not have two consecutive } 1\text{'s}\}$

Read a *set former* as
“The set of strings w...

Such that...

These conditions about w are true.
Proofs of Set Equivalence

- Often, we need to prove that two descriptions of sets are in fact the same set.

- Here, one set is “the language of this DFA,” and the other is “the set of strings of 0’s and 1’s with no consecutive 1’s.”
Proofs – (2)

• In general, to prove $S = T$, we need to prove two parts: $S \subseteq T$ and $T \subseteq S$. That is:
 1. If w is in S, then w is in T.
 2. If w is in T, then w is in S.

• As an example, let $S =$ the language of our running DFA, and $T =$ “no consecutive 1’s.”
Part 1: $S \subseteq T$

- **To prove**: if w is accepted by then w has no consecutive 1’s.
- Proof is an induction on length of w.
- **Important trick**: Expand the inductive hypothesis to be more detailed than you need.
The Inductive Hypothesis

1. If $\delta(A, w) = A$, then w has no consecutive 1’s and does not end in 1.
2. If $\delta(A, w) = B$, then w has no consecutive 1’s and ends in a single 1.

 • **Basis**: $|w| = 0$; i.e., $w = \epsilon$.

 • (1) holds since ϵ has no 1’s at all.

 • (2) holds *vacuously*, since $\delta(A, \epsilon)$ is not B.

“length of”

Important concept:
If the “if” part of “if..then” is false, the statement is true.
Inductive Step

- Assume (1) and (2) are true for strings shorter than \(w \), where \(|w| \) is at least 1.
- Because \(w \) is not empty, we can write \(w = xa \), where \(a \) is the last symbol of \(w \), and \(x \) is the string that precedes.
- IH is true for \(x \).
Inductive Step – (2)

- Need to prove (1) and (2) for \(w = xa \).
- (1) for \(w \) is: If \(\delta(A, w) = A \), then \(w \) has no consecutive 1’s and does not end in 1.
- Since \(\delta(A, w) = A \), \(\delta(A, x) \) must be A or B, and \(a \) must be 0 (look at the DFA).
- By the IH, \(x \) has no 11’s.
- Thus, \(w \) has no 11’s and does not end in 1.
Inductive Step – (3)

• Now, prove (2) for $w = xa$: If $\delta(A, w) = B$, then w has no 11’s and ends in 1.
• Since $\delta(A, w) = B$, $\delta(A, x)$ must be A, and a must be 1 (look at the DFA).
• By the IH, x has no 11’s and does not end in 1.
• Thus, w has no 11’s and ends in 1.
Part 2: \(T \subseteq S \)

- Now, we must prove: if \(w \) has no 11’s, then \(w \) is accepted by

- **Contrapositive**: If \(w \) is **not** accepted by

Key idea: contrapositive of “if X then Y” is the equivalent statement “if not Y then not X.”
Using the Contrapositive

• Every w gets the DFA to exactly one state.
 • Simple inductive proof based on:
 • Every state has exactly one transition on 1, one transition on 0.

• The only way w is not accepted is if it gets to C.
Using the Contrapositive – (2)

- The only way to get to C [formally: \(\delta(A,w) = C \)] is if \(w = x_1y \), \(x \) gets to B, and \(y \) is the tail of \(w \) that follows what gets to C for the first time.
- If \(\delta(A,x) = B \) then surely \(x = z_1 \) for some \(z \).
- Thus, \(w = z_1y \) and has 11.
Regular Languages

• A language L is *regular* if it is the language accepted by some DFA.
 • **Note**: the DFA must accept only the strings in L, no others.

• Some languages are not regular.
 • Intuitively, regular languages “cannot count” to arbitrarily high integers.
Example: A Nonregular Language

$L_1 = \{0^n1^n \mid n \geq 1\}$

• **Note**: a^i is conventional for i a’s.
 • Thus, $0^4 = 0000$, e.g.

• **Read**: “The set of strings consisting of n 0’s followed by n 1’s, such that n is at least 1.

• Thus, $L_1 = \{01, 0011, 000111,\ldots\}$
Another Example

\[L_2 = \{ w \mid w \text{ in } \{(,)\}^* \text{ and } w \text{ is } \text{balanced} \} \]

- **Note**: alphabet consists of the parenthesis symbols ’(’ and ’)’.
- Balanced parens are those that can appear in an arithmetic expression.
 - E.g.: (), (()), (), (())(,),...
But Many Languages are Regular

- Regular Languages can be described in many ways, e.g., regular expressions.
- They appear in many contexts and have many useful properties.
- **Example**: the strings that represent floating point numbers in your favorite language is a regular language.
Example: A Regular Language

$L_3 = \{ w \mid w \text{ in } \{0,1\}^* \text{ and } w, \text{ viewed as a binary integer is divisible by 23}\}$

- The DFA:
 - 23 states, named 0, 1, ..., 22.
 - Correspond to the 23 remainders of an integer divided by 23.
 - Start and only final state is 0.
Transitions of the DFA for L_3

- If string w represents integer i, then assume $\delta(0, w) = i \mod 23$.
- Then $w0$ represents integer $2i$, so we want $\delta(i \mod 23, 0) = (2i) \mod 23$.
- Similarly: $w1$ represents $2i+1$, so we want $\delta(i \mod 23, 1) = (2i+1) \mod 23$.
- Example: $\delta(15, 0) = 30 \mod 23 = 7$; $\delta(11, 1) = 23 \mod 23 = 0$.

Key idea: design a DFA by figuring out what each state needs to remember about the past.
Another Example

$L_4 = \{ w \mid w \text{ in } \{0,1\}^* \text{ and } w, \text{ viewed as the reverse of a binary integer is divisible by 23} \}$

- **Example**: 01110100 is in L_4, because its reverse, 00101110 is 46 in binary.
- Hard to construct the DFA.
- But theorem says the reverse of a regular language is also regular.