The Pumping Lemma

Infiniteness Test
The Pumping Lemma
Nonregular Languages
The Infiniteness Problem

- Is a given regular language infinite?
- Start with a DFA for the language.
- **Key idea**: if the DFA has n states, and the language contains any string of length n or more, then the language is infinite.
- Otherwise, the language is surely finite.
 - Limited to strings of length n or less.
Proof of Key Idea

• If an n-state DFA accepts a string w of length n or more, then there must be a state that appears twice on the path labeled w from the start state to a final state.

• Because there are at least $n+1$ states along the path.
Proof – (2)

Then $x y^i z$ is in the language for all $i \geq 0$.

Since y is not ε, we see an infinite number of strings in L.
Infiniteness Test: Finding a Cycle

1. Eliminate states not reachable from the start state.
2. Eliminate states that do not reach a final state.
3. Test if the remaining transition graph has any cycles.
The Pumping Lemma

• We have, almost accidentally, proved a statement that is quite useful for showing certain languages are not regular.
• Called the *pumping lemma for regular languages*.
Statement of the Pumping Lemma

For every regular language L
There is an integer n, such that
For every string w in L of length $\geq n$
We can write $w = xyz$ such that:

1. $|xy| \leq n$.
2. $|y| > 0$.
3. For all $i \geq 0$, $xy^i z$ is in L.

Number of states of DFA for L

Labels along first cycle on path labeled w
Example: Use of Pumping Lemma

- We have claimed \(\{0^k1^k \mid k \geq 1\} \) is not a regular language.
- Suppose it were. Then there would be an associated \(n \) for the pumping lemma.
- Let \(w = 0^n1^n \). We can write \(w = xyz \), where \(x \) and \(y \) consist of 0’s, and \(y \neq \epsilon \).
- But then \(xyyz \) would be in \(L \), and this string has more 0’s than 1’s.