Regular Expressions

Definitions

Equivalence to Finite Automata
RE’s: Introduction

• Regular expressions are an algebraic way to describe languages.
• They describe exactly the regular languages.
• If E is a regular expression, then L(E) is the language it defines.
• We’ll describe RE’s and their languages recursively.
RE’s: Definition

• **Basis 1**: If a is any symbol, then a is a RE, and $L(a) = \{a\}$.
 - **Note**: $\{a\}$ is the language containing one string, and that string is of length 1.

• **Basis 2**: ϵ is a RE, and $L(\epsilon) = \{\epsilon\}$.

• **Basis 3**: \emptyset is a RE, and $L(\emptyset) = \emptyset$.
RE's: Definition – (2)

- **Induction 1**: If E_1 and E_2 are regular expressions, then $E_1 + E_2$ is a regular expression, and $L(E_1 + E_2) = L(E_1) \cup L(E_2)$.

- **Induction 2**: If E_1 and E_2 are regular expressions, then $E_1 E_2$ is a regular expression, and $L(E_1 E_2) = L(E_1)L(E_2)$.

Concatenation: the set of strings wx such that w is in $L(E_1)$ and x is in $L(E_2)$.
RE’s: Definition – (3)

- **Induction 3**: If E is a RE, then E^* is a RE, and $L(E^*) = (L(E))^*$.

Closure, or “Kleene closure” = set of strings $w_1w_2...w_n$, for some $n \geq 0$, where each w_i is in $L(E)$.

Note: when $n=0$, the string is ϵ.
Precedence of Operators

- Parentheses may be used wherever needed to influence the grouping of operators.
- Order of precedence is * (highest), then concatenation, then + (lowest).
Examples: RE’s

- \(L(01) = \{01\} \).
- \(L(01+0) = \{01, 0\} \).
- \(L(0(1+0)) = \{01, 00\} \).
 - Note order of precedence of operators.
- \(L(0^*) = \{\epsilon, 0, 00, 000, \ldots \} \).
- \(L((0+10)^*(\epsilon+1)) = \) all strings of 0’s and 1’s without two consecutive 1’s.
More Examples: RE’s

- \(L((0+1)^*101(0+1)^*) \) = all strings of 0’s and 1’s having 101 as a substring.
- \(L((0+1)^*1(0+1)^*0(0+1)^*1(0+1)^*) \) = all strings of 0’s and 1’s having 101 as a subsequence.
- \(L(1^*(1^*01^*01^*01^*)^*1^*) \) = all strings of 0’s and 1’s having a number of 0’s that is a multiple of 3.
Equivalence of RE’s and Automata

- We need to show that for every RE, there is an automaton that accepts the same language.
 - Pick the most powerful automaton type: the ε-NFA.
- And we need to show that for every automaton, there is a RE defining its language.
 - Pick the most restrictive type: the DFA.
Converting a RE to an ε-NFA

• Proof is an induction on the number of operators (+, concatenation, *) in the RE.
• We always construct an automaton of a special form (next slide).
Form of ε-NFA’s Constructed

Start state: Only state with external predecessors

No arcs from outside,
no arcs leaving

“Final” state: Only state with external successors
RE to ε-NFA: Basis

• Symbol a:

• ε:

• \emptyset:
RE to ε-NFA: **Induction 1** – Union

For $E_1 \cup E_2$

Diagram:

- For E_1
- For E_2
- For $E_1 \cup E_2$
RE to ε-NFA: **Induction 2** – Concatenation

For E_1

For E_2

For E_1E_2
RE to ϵ-NFA: **Induction 3 – Closure**

For E

For E^*

For E
DFA-to-RE

- A strange sort of induction.
- States of the DFA are assumed to be $1, 2, \ldots, n$.
- We construct RE’s for the labels of restricted sets of paths.
 - **Basis**: single arcs or no arc at all.
 - **Induction**: paths that are allowed to traverse next state in order.
k-Paths

- A k-path is a path through the graph of the DFA that goes through no state numbered higher than k.
- Endpoints are not restricted; they can be any state.
Example: k-Paths

0-paths from 2 to 3: RE for labels = 0.

1-paths from 2 to 3: RE for labels = 0+11.

2-paths from 2 to 3: RE for labels = (10)*0+1(01)*1

3-paths from 2 to 3: RE for labels = ??
k-Path Induction

• Let R_{ij}^k be the regular expression for the set of labels of k-paths from state i to state j.

• **Basis**: $k=0$. $R_{ij}^0 = \text{sum of labels of arc from } i \text{ to } j$.
 • \emptyset if no such arc.
 • But add ϵ if $i=j$.

Example: Basis

- \(R_{12}^0 = 0 \).
- \(R_{11}^0 = \emptyset + \epsilon = \epsilon \).
• A k-path from i to j either:
 1. Never goes through state k, or
 2. Goes through k one or more times.

$$R_{ij}^k = R_{ij}^{k-1} + R_{ik}^{k-1}(R_{kk}^{k-1})^* R_{kj}^{k-1}.$$
Illustration of Induction

Paths not going through k

From k to k
Several times

Path to k

States < k

From k to j
Final Step

- The RE with the same language as the DFA is the sum (union) of R_{ij}^n, where:
 1. n is the number of states; i.e., paths are unconstrained.
 2. i is the start state.
 3. j is one of the final states.
Example

- $R_{23}^3 = R_{23}^2 + R_{23}^2(R_{33}^2)*R_{33}^2 = R_{23}^2(R_{33}^2)^*$
- $R_{23}^2 = (10)*0 + 1(01)*1$
- $R_{33}^2 = 0(01)*(1+00) + 1(10)*(0+11)$
- $R_{23}^3 = [(10)*0 + 1(01)*1]$
 $[(0(01)*(1+00) + 1(10)*(0+11))]*$
Summary

• Each of the three types of automata (DFA, NFA, ϵ-NFA) we discussed, and regular expressions as well, define exactly the same set of languages: the regular languages.