More Undecidable Problems

Rice’s Theorem
Post’s Correspondence Problem
Some Real Problems
Properties of Languages

- Any set of languages is a property of languages.
- **Example:** The infiniteness property is the set of infinite languages.
Properties of Languages – (2)

◆ As always, languages must be defined by some descriptive device.
◆ The most general device we know is the TM.
◆ Thus, we shall think of a property as a problem about Turing machines.
◆ Let \(L_P \) be the set of binary TM codes for TM’s M such that \(L(M) \) has property P.
Trivial Properties

- There are two (trivial) properties P for which L_P is decidable.
 1. The *always-false property*, which contains no RE languages.
 2. The *always-true property*, which contains every RE language.

- **Rice’s Theorem**: For every other property P, L_P is undecidable.
Plan for Proof of Rice’s Theorem

1. **Lemma needed**: recursive languages are closed under complementation.
2. We need the technique known as **reduction**, where an algorithm converts instances of one problem to instances of another.
3. Then, we can prove the theorem.
Closure of Recursive Languages Under Complementation

◆ If L is a language with alphabet Σ^*, then the *complement* of L is $\Sigma^* - L$.

 Denote the complement of L by L^c.

◆ **Lemma**: If L is recursive, so is L^c.

◆ **Proof**: Let $L = L(M)$ for a TM M.

◆ Construct M' for L^c.

◆ M' has one final state, the new state f.
Proof – Concluded

◆ M' simulates M.
◆ But if M enters an accepting state, M' halts without accepting.
◆ If M halts without accepting, M' instead has a move taking it to state f.
◆ In state f, M' halts.
A reduction from language L to language L’ is an algorithm (TM that always halts) that takes a string w and converts it to a string x, with the property that:

\[x \text{ is in L’ if and only if } w \text{ is in L.} \]
TM’s as *Transducers*

- We have regarded TM’s as acceptors of strings.
- But we could just as well visualize TM’s as having an *output tape*, where a string is written prior to the TM halting.
- Such a TM translates its input to its output.
Reductions – (2)

- If we reduce L to L', and L' is decidable, then the algorithm for L' + the algorithm of the reduction shows that L is also decidable.

- **Used in the contrapositive**: If we know L is not decidable, then L' cannot be decidable.
Reductions – Aside

◆ This form of reduction is not the most general.

◆ **Example**: We “reduced” L_d to L_u, but in doing so we had to complement answers.

◆ More in NP-completeness discussion on Karp vs. Cook reductions.
Proof of Rice’s Theorem

◆ We shall show that for every nontrivial property P of the RE languages, L_P is undecidable.
◆ We show how to reduce L_u to L_P.
◆ Since we know L_u is undecidable, it follows that L_P is also undecidable.
The Reduction

◆ Our reduction algorithm must take M and w and produce a TM M’.
◆ L(M’) has property P if and only if M accepts w.
◆ M’ has two tapes, used for:
 1. Simulates another TM M_L on the input to M’.
 2. Simulates M on w.
◆ Note: neither M, M_L, nor w is input to M’.
The Reduction – (2)

◆ Assume that \emptyset does not have property P.
 ◦ If it does, consider the complement of P, which would also be decidable by the lemma.
◆ Let L be any language with property P, and let M_L be a TM that accepts L.
◆ M' is constructed to work as follows (next slide).
Design of M'

1. On the second tape, write w and then simulate M on w.
2. If M accepts w, then simulate M_L on the input x to M', which appears initially on the first tape.
3. M' accepts its input x if and only if M_L accepts x.
Action of M' if M Accepts w

- Simulate M on input w
- Simulate M_L on input x

On accept:

Accept iff x is in M_L
Design of M' – (2)

◆ Suppose M accepts w.
◆ Then M' simulates M_L and therefore accepts x if and only if x is in L.
◆ That is, $L(M') = L$, $L(M')$ has property P, and M' is in L_P.
Design of M' – (3)

- Suppose M does not accept w.
- Then M' never starts the simulation of M_L, and never accepts its input x.
- Thus, $L(M') = \emptyset$, and $L(M')$ does not have property P.
- That is, M' is not in L_P.
Action of M' if M Does not Accept w

Simulate M on input w

Never accepts, so nothing else happens and x is not accepted
Design of M' – Conclusion

- Thus, the algorithm that converts M and w to M' is a reduction of L_u to L_P.
- Thus, L_P is undecidable.
A real reduction algorithm M, w → M' → Hypothetical algorithm for property P

Accept iff M accepts w
Otherwise halt without accepting

This would be an algorithm for L_u, which doesn’t exist
Applications of Rice’s Theorem

◆ We now have any number of undecidable questions about TM’s:
 ▶ Is \(L(M) \) a regular language?
 ▶ Is \(L(M) \) a CFL?
 ▶ Does \(L(M) \) include any palindromes?
 ▶ Is \(L(M) \) empty?
 ▶ Does \(L(M) \) contain more than 1000 strings?
 ▶ Etc., etc.