Regular Language Equivalence and DFA Minimization

Equivalence of Two Regular Languages

DFA Minimization

Decision Property: Equivalence

- Given regular languages L and M, is L = M?
- Algorithm involves constructing the product DFA from DFA's for L and M.
- Let these DFA's have sets of states Q and R, respectively.
- Product DFA has set of states Q × R.
 - I.e., pairs [q, r] with q in Q, r in R.

Product DFA – Continued

- Start state = $[q_0, r_0]$ (the start states of the DFA's for L, M).
- Transitions: $\delta([q,r], a) = [\delta_L(q,a), \delta_M(r,a)]$
 - δ_L , δ_M are the transition functions for the DFA's of L, M.
 - That is, we simulate the two DFA's in the two state components of the product DFA.

Example: Product DFA

Equivalence Algorithm

- Make the final states of the product DFA be those states [q, r] such that exactly one of q and r is a final state of its own DFA.
- Thus, the product accepts w iff w is in exactly one of L and M.

Example: Equivalence

Equivalence Algorithm – (2)

- The product DFA's language is empty iff L = M.
- But we already have an algorithm to test whether the language of a DFA is empty.

Decision Property: Containment

- Given regular languages L and M, is L ⊆ M?
- Algorithm also uses the product automaton.
- How do you define the final states [q, r] of the product so its language is empty iff L ⊆ M?

Answer: q is final; r is not.

Example: Containment

Note: the only final state is unreachable, so containment holds.

The Minimum-State DFA for a Regular Language

- In principle, since we can test for equivalence of DFA's we can, given a DFA A find the DFA with the fewest states accepting L(A).
- Test all smaller DFA's for equivalence with A.
- But that's a terrible algorithm.

Efficient State Minimization

- Construct a table with all pairs of states.
- If you find a string that distinguishes two states (takes exactly one to an accepting state), mark that pair.
- Algorithm is a recursion on the length of the shortest distinguishing string.

State Minimization – (2)

- Basis: Mark a pair if exactly one is a final state.
- Induction: mark [q, r] if there is some input symbol a such that [δ (q,a), δ (r,a)] is marked.
- After no more marks are possible, the unmarked pairs are equivalent and can be merged into one state.

Transitivity of "Indistinguishable"

- If state p is indistinguishable from q, and q is indistinguishable from r, then p is indistinguishable from r.
- Proof: The outcome (accept or don't)
 of p and q on input w is the same, and
 the outcome of q and r on w is the
 same, then likewise the outcome of p
 and r.

Constructing the Minimum-State DFA

- Suppose q₁,...,q_k are indistinguishable states.
- Replace them by one state q.
- Then $\delta(q_1, a),..., \delta(q_k, a)$ are all indistinguishable states.
 - Key point: otherwise, we should have marked at least one more pair.
- Let $\delta(q, a)$ = the representative state for that group.

Example: State Minimization

	r	b	_ r b	_
$\longrightarrow \{1\}$	{2,4}	{5}	$\rightarrow ABC$	
		{1,3,5,7}	BDE	Here it is
		{1,3,7,9}	C D F D D G	with more
		{1,3,5,7,9}	E D G	convenient
		{1,3,5,7,9}	* F D C	state names
* {1,3,7,9} * {1,3,5,7,9}			* G D G	

Remember this DFA? It was constructed for the chessboard NFA by the subset construction.

Example - Continued

	r	b
$\rightarrow \overline{A}$	В	C
В	D	Ε
C	D	F
D	D	G
Ε	D	G
* F	D	C
*G	D	G

Start with marks for the pairs with one of the final states F or G.

Example – Continued

	r	b
$\rightarrow \overline{A}$	В	C
В	D	Ε
C	D	F
D	D	G
Ε	D	G
* F	D	C
*G	D	G

Input r gives no help, because the pair [B, D] is not marked.

Example – Continued

	r	b
$\rightarrow \overline{A}$	В	C
В	D	Ε
C	D	F
D	D	G
Ε	D	G
* F	D	С
*G	D	G

```
G F E D C B
A X X X X X X
B X X X X X X
C X X
D X X
E X X
F X
```

But input b distinguishes {A,B,F} from {C,D,E,G}. For example, [A, C] gets marked because [C, F] is marked.

Example – Continued

	r	b
$\rightarrow \overline{A}$	В	С
В	D	Ε
C	D	F
D	D	G
Ε	D	G
* F	D	C
*G	D	G

[C, D] and [C, E] are marked because of transitions on b to marked pair [F, G].

Example - Continued

[A, B] is marked because of transitions on r to marked pair [B, D].

[D, E] can never be marked, because on both inputs they go to the same state.

Example – Concluded

Replace D and E by H.
Result is the minimum-state DFA.

Eliminating Unreachable States

- Unfortunately, combining indistinguishable states could leave us with unreachable states in the "minimum-state" DFA.
- Thus, before or after, remove states that are not reachable from the start state.