Closure Properties of Regular Languages

Union, Intersection, Difference, Concatenation, Kleene Closure, Reversal, Homomorphism, Inverse Homomorphism
Closure Properties

• Recall a closure property is a statement that a certain operation on languages, when applied to languages in a class (e.g., the regular languages), produces a result that is also in that class.

• For regular languages, we can use any of its representations to prove a closure property.
Closure Under Union

• If L and M are regular languages, so is $L \cup M$.

• **Proof**: Let L and M be the languages of regular expressions R and S, respectively.

• Then R+S is a regular expression whose language is $L \cup M$.
Closure Under Concatenation and Kleene Closure

- Same idea:
 - RS is a regular expression whose language is LM.
 - R* is a regular expression whose language is L*.
Closure Under Intersection

• If L and M are regular languages, then so is $L \cap M$.

• Proof: Let A and B be DFA’s whose languages are L and M, respectively.

• Construct C, the product automaton of A and B.

• Make the final states of C be the pairs consisting of final states of both A and B.
Example: Product DFA for Intersection

- **States:** A, B, C, D, [A,C], [A,D], [B,C], [B,D]
- **Transitions:**
 - From A to B on 0, 1
 - From A to A on 0, 1
 - From B to B on 0, 1
 - From C to D on 1
 - From D to D on 0
 - From [A,C] to [A,D] on 0
 - From [A,C] to [A,C] on 1
 - From [B,C] to [B,C] on 1
 - From [B,D] to [B,D] on 0
Closure Under Difference

• If L and M are regular languages, then so is $L - M = \text{strings in } L \text{ but not } M$.

• **Proof**: Let A and B be DFA’s whose languages are L and M, respectively.

• Construct C, the product automaton of A and B.

• Make the final states of C be the pairs where A-state is final but B-state is not.
Example: Product DFA for Difference

Notice: difference is the empty language
Closure Under Complementation

• The *complement* of a language L (with respect to an alphabet Σ such that Σ^* contains L) is $\Sigma^* - L$.

• Since Σ^* is surely regular, the complement of a regular language is always regular.
Closure Under Reversal

• Recall example of a DFA that accepted the binary strings that, as integers were divisible by 23.
• We said that the language of binary strings whose reversal was divisible by 23 was also regular, but the DFA construction was very tricky.
• Good application of reversal-closure.
Closure Under Reversal – (2)

• Given language L, L^R is the set of strings whose reversal is in L.
• **Example:** $L = \{0, 01, 100\}$; $L^R = \{0, 10, 001\}$.
• **Proof:** Let E be a regular expression for L.
• We show how to reverse E, to provide a regular expression E^R for L^R.
Reversal of a Regular Expression

- **Basis**: If E is a symbol a, ϵ, or \emptyset, then $E^R = E$.
- **Induction**: If E is
 - $F + G$, then $E^R = F^R + G^R$.
 - FG, then $E^R = G^R F^R$.
 - F^*, then $E^R = (F^R)^*$.
Example: Reversal of a RE

- Let $E = 01^* + 10^*$.
- $E^R = (01^* + 10^*)^R = (01^*)^R + (10^*)^R$
- $= (1^*E^R)0^R + (0^*E^R)1^R$
- $= (1^R)*0 + (0^R)*1$
- $= 1^*0 + 0^*1$.
Homomorphisms

• A *homomorphism* on an alphabet is a function that gives a string for each symbol in that alphabet.

• Example: \(h(0) = ab; h(1) = \epsilon. \)

• Extend to strings by \(h(a_1...a_n) = h(a_1)... h(a_n). \)

• Example: \(h(01010) = ababab. \)
Closure Under Homomorphism

- If L is a regular language, and h is a homomorphism on its alphabet, then $h(L) = \{h(w) | w \text{ is in } L\}$ is also a regular language.

- **Proof**: Let E be a regular expression for L.
 - Apply h to each symbol in E.
 - Language of resulting RE is $h(L)$.
Example: Closure under Homomorphism

• Let $h(0) = ab; h(1) = \epsilon$.
• Let L be the language of regular expression $01^* + 10^*$.
• Then $h(L)$ is the language of regular expression $ab\epsilon^* + \epsilon(ab)^*$.

Note: use parentheses to enforce the proper grouping.
Example – Continued

• \(ab\varepsilon^* + \varepsilon(ab)^* \) can be simplified.
• \(\varepsilon^* = \varepsilon \), so \(ab\varepsilon^* = ab\varepsilon \).
• \(\varepsilon \) is the identity under concatenation.
 • That is, \(\varepsilon E = E\varepsilon = E \) for any RE \(E \).
• Thus, \(ab\varepsilon^* + \varepsilon(ab)^* = ab\varepsilon + \varepsilon(ab)^* = ab + (ab)^* \).
• Finally, \(L(ab) \) is contained in \(L((ab)^*) \), so a RE for \(h(L) \) is \((ab)^* \).
Inverse Homomorphisms

• Let h be a homomorphism and L a language whose alphabet is the output language of h.

• $h^{-1}(L) = \{w \mid h(w) \text{ is in } L\}$.
Example: Inverse Homomorphism

- Let $h(0) = ab$; $h(1) = \epsilon$.
- Let $L = \{abab, baba\}$.
- $h^{-1}(L)$ = the language with two 0’s and any number of 1’s = $L(1^*01^*01^*)$.

Notice: no string maps to baba; any string with exactly two 0’s maps to abab.
Closure Proof for Inverse Homomorphism

• Start with a DFA A for L.
• Construct a DFA B for $h^{-1}(L)$ with:
 • The same set of states.
 • The same start state.
 • The same final states.
 • Input alphabet = the symbols to which homomorphism h applies.
Proof – (2)

- The transitions for B are computed by applying h to an input symbol \(a \) and seeing where A would go on sequence of input symbols \(h(a) \).
- Formally, \(\delta_B(q, a) = \delta_A(q, h(a)) \).
Example: Inverse Homomorphism Construction

Given the homomorphism h with $h(0) = ab$ and $h(1) = \epsilon$.

Since $h(1) = \epsilon$,

Since $h(0) = ab$.
Proof – (3)

• Induction on $|w|$ shows that $\delta_B(q_0, w) = \delta_A(q_0, h(w))$.

• **Basis**: $w = \epsilon$.

• $\delta_B(q_0, \epsilon) = q_0$, and $\delta_A(q_0, h(\epsilon)) = \delta_A(q_0, \epsilon) = q_0$.
Proof – (4)

- **Induction**: Let $w = xa$; assume IH for x.
- $\delta_B(q_0, w) = \delta_B(\delta_B(q_0, x), a)$.
- $= \delta_B(\delta_A(q_0, h(x)), a)$ by the IH.
- $= \delta_A(\delta_A(q_0, h(x)), h(a))$ by definition of the DFA B.
- $= \delta_A(q_0, h(x)h(a))$ by definition of the extended delta.
- $= \delta_A(q_0, h(w))$ by def. of homomorphism.