

Preparing a Benchmark Driver

CS 165, Project in Algorithms and Data Structures
UC Irvine

Spring 2020

Presented by Rob Gevorkyan

What is a benchmark driver?
● An executable that runs a single function on a

random input of a chosen size and outputs
nothing.

● Example call:

./project1 merge_sort 32768

2^15

Why do we need one?
● Once we have a benchmark driver, we can run it repeatedly in a

benchmark script and collect timing data for a variety of
functions and input sizes, possibly including multiple of each
size for averaging.

● Any function can be benchmarked independently of every other.
If something goes wrong (exceptions, loss of power, etc.), you
can resume benchmarking wherever you left off.

The basic idea
● Each of the functions being benchmarked is implemented in some external file(s).

● The driver is compiled with the function implementations and does the following in the
main method:

– generates a map from function names to the functions themselves. you can use
std::map<std::string, fn_ptr>, where fn_ptr is a typedef for a function pointer with
the signature matching your function (they should all be the same signature)

– reads the command line arguments

– converts any data as needed (e.g. strings to ints)

– uses the name to function map to choose a function to execute

– generates a random instance

– run the mapped function on the random instance

Reading command line arguments
● To be able to use command line arguments, make your main method’s signature as shown

below

● argc gives the number of elements in argv

● argc is always at least 1, since argv[0] is the name of the program itself

● for j > 1, argv[j] is the jth argument given to the program

● note: all the arguments are given as c strings, but these can easily be converted using the
standard library to strings and integer values

int main(int argc, char* argv[]) {
...
}

Creating the name to function map
● A convenient data structure for us to use is std::map

● A map stores (key, value) pairs. Feed it a key, and it returns a
value.

#include <map>

std::map<std::string, sort_fn> name_to_fn;
name_to_fn[“insertion”] = insertion_sort;
name_to_fn[“merge”] = merge_sort;
…
std::vector<int> nums = ...
name_to_fn[“insertion”](nums);

sorts nums with insertion sort

Function pointers
● C++ and other languages have support for references to

functions in addition to data.

● A function pointer is like any other pointer, but it has a bizarre
syntax. To make things more readable, we can use a typedef.

typedef void (*sort_fn)(std::vector<int>& nums);
sort_fn insertion_sort_fn = insertion_sort;
std::vector<int> nums = ...
insertion_sort_fn(nums);

Creating random instances
● Given an input size n, we can easily create a vector from 1 to n,

in that order.

● To give each run some variety, we can do a random shuffle of
this vector. To do this, we can use the random_shuffle method
in the <algorithm> library. See random_shuffle for details and
examples.

● You should have a dedicated function for creating an instance
that returns a reference to the vector. You can use this in your
main method.

http://www.cplusplus.com/reference/algorithm/random_shuffle/

Putting it all together
● With the name to function map created, the

elements of argv in main determine how to
create the random instance (by specifying size)
and the function to use.

● The main method doesn’t care about the vector
being sorted itself. It just runs the function on
the vector. You should however test the logic
separate from the driver.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

