Preparing a Benchmark Driver

CS 165, Project in Algorithms and Data Structures
UC Irvine
Spring 2020

Presented by Rob Gevorkyan



What is a benchmark driver?

* An executable that runs a single function on a
random input of a chosen size and outputs
nothing.

 Example call:

./projectl merge sort 32768



Why do we need one?

* Once we have a benchmark driver, we can run it repeatedly in a
benchmark script and collect timing data for a variety of
functions and input sizes, possibly including multiple of each
size for averaging.

* Any function can be benchmarked independently of every other.
If something goes wrong (exceptions, loss of power, etc.), you
can resume benchmarking wherever you left off.



The basic idea

« Each of the functions being benchmarked is implemented in some external file(s).

« The driver is compiled with the function implementations and does the following in the
main method:

generates a map from function names to the functions themselves. you can use
std::map<std::string, fn_ptr>, where fn_ptr is a typedef for a function pointer with
the signature matching your function (they should all be the same signature)

reads the command line arguments

converts any data as needed (e.g. strings to ints)

uses the name to function map to choose a function to execute
generates a random instance

run the mapped function on the random instance



Reading command line arguments

To be able to use command line arguments, make your main method’s signature as shown
below

argc gives the number of elements in argv
argc is always at least 1, since argv[0] is the name of the program itself
for j > 1, argv]j] is the jth argument given to the program

note: all the arguments are given as c strings, but these can easily be converted using the
standard library to strings and integer values

int main(int argc, char* argv[]) {

}



Creating the name to function map

* A convenient data structure for us to use is std::map

A map stores (key, value) pairs. Feed it a key, and it returns a
value.

#include <map>
std: :map<std::string, sort fn> name to fn;

name to fn[%“insertion”] = insertion sort;
name to fn[“merge”] = merge sort;

std::vector<int> nums = ...
name to fn[“insertion”] (nums) ;



Function pointers

« C++ and other languages have support for references to
functions in addition to data.

« A function pointer is like any other pointer, but it has a bizarre
syntax. To make things more readable, we can use a typedef.

typedef void (*sort fn) (std::vector<int>& nums) ;
sort fn insertion sort fn = insertion sort;

std: :vector<int> nums = ...
insertion sort fn (nums);



Creating random instances

« Given an input size n, we can easily create a vector from 1 to n,
in that order.

« To give each run some variety, we can do a random shuffle of
this vector. To do this, we can use the random_shuffle method
in the <algorithm> library. See random_shuffle for details and
examples.

* You should have a dedicated function for creating an instance
that returns a reference to the vector. You can use this in your
main method.


http://www.cplusplus.com/reference/algorithm/random_shuffle/

Putting it all together

* With the name to function map created, the
elements of argv in main determine how to
create the random instance (by specifying size)
and the function to use.

 The main method doesn’t care about the vector
being sorted itself. It just runs the function on
the vector. You should however test the logic
separate from the driver.



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

