

Collecting Timing Data

CS 165, Project in Algorithms and Data Structures
UC Irvine

Spring 2020

Presented by Rob Gevorkyan

The time command
● All the major OSes can provide detailed performance data of

program runs

– Linux: /usr/bin/time ...

– Windows 10: Using Windows Subsystem for Linux,
use the same executable as for Linux

– macOS: With homebrew installed:
● brew install gnu-time
● gtime …

Using the time command
Default formatting on Ubuntu 18.04 (may differ on other OSes)

/usr/bin/time shell_sort1 32768

1.01user 0.00system 0:01.01elapsed 99%CPU (0avgtext+0avgdata
1192maxresident)k
0inputs+0outputs (0major+54minor)pagefaults 0swaps

the output above may give us more information than we need.
it is also not in a format that is easy to parse.

Using the time command
Custom formatting

change output just to contain the number of
seconds the program spent in user space.
you may want to look at some of the other metrics.
read the documentation to see what’s available
/usr/bin/time –-format “%U” ./project1 shell_sort1 -n 32768

1.01

● If you use the suggested benchmark driver format, you can
write a bash script that loops over all of the function names and
your desired array sizes.

● Each call to time might look something like this:

Saving the timing data

input size
replaced by the time command
with the number of seconds the
program spent in user space

/usr/bin/time –format “1048576, %U”
shell_sort1 1048576 -o
shell_sort1_timings.csv --append

Timings file format
● We suggest putting the timings for each function in a separate

file.
● The file should be a csv (comma-separated value) file with a

header line indicating what each column represents (we will use
this later).

● Example: shell_sort1.csv
size, time
1024, 0.89
2048, 2.3
4096, 5.18
...

we use powers
of 2 since later

we will plot on log scale

for loops in bash
● bash supports for loops in a few different ways shown below:

for fn in shell_sort, merge_sort,
insertion_sort
do

echo $fn
done

#prints the following lines:
#shell_sort
#merge_sort
#insertion_sort

for j in {10..14}
do

echo $((2**j))$
done

#prints the following lines:
#1024
#2048
#4096
#8192

nesting for loops in bash
● We can combine the forms just shown to get something that

loops over all of the functions to benchmark with all of the sizes.

Here is a snippet showing the basic structure:

for fn in shell_sort, merge_sort, insertion_sort
do
 for ((i = 10; i <= 20; i++)); do

 # replace the following line with a call to ‘time’
 echo "$fn $((2**i))"
 done
done

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

