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Computational Models

a We often skip this step, but an algorithm
description requires a computational model.

o There are several computational models,
which are based on various computational
architectures.

o

Algorithm Architecture
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Turing Machine

o Mathematical model of computation, 1936

o Complexity-theoretic Church—Turing thesis:
Any polynomial-time computable function (for any
computational model) has a polynomial-time
algorithm on a Turing machine.
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Alan Turing
https://mediartinnovation.com/2014/05/26/alan-turing-turing-machine-1936/ https://en.wikipedia.org/wiki/Alan_Turing
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Turing Machine

o Not a real-world computer, but imitations exist.

o Any computational model/system that can
simulate a Turing machine can compute any
computable function: Turing-complete.

https://en.wikipedia.org/wiki/Turing_machine
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ENIAC

o The first programmable, electronic, general-
purpose digital computer, completed in 1945.

a It was Turing-complete
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https://en.wikipedia.org/wiki/ENIAC
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The von Neumann Architecture

o ENIAC gave rise to a computational model
called the von Neumann Architecture.

Central Processing Unit

Control Unit

Input Arithmetic/Logic Unit Output
Vvice

Memory stores both data and instructions
John von Neumann

https://en.wikipedia.org/wiki/Von_Neumann_architecture
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Random Access Machine (RAM)

a A refinement of the von Neumann architecture.

Read only input tape X1 X2 Xn
[J
r1 Accumulator
Location Counter Program
r2
r3
Memory
Write only output tape Yn
Y1 Y2 T

https://www.geeksforgeeks.org/what-is-random-access-machine/
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Programming Languages

a Machine-independent languages written by
humans and compiled into instructions for

speC|f|c computer architectures.

The FLOW-MATIC
programming language she
created was later extended to
create COBOL, a widely used
high-level language for
busmess appllcatlons
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RAM Programming Primitives

o Language primitives for the RAM model are based
on high-level programming languages, which were
defined for the von Neumann architecture.

Operations Number of steps

Arithmetic operations: + - */ 1
Logical operations: AND, OR, NOT 1
Conditional:

- Comparison:a<b 1

- Conditional branching: if

Subroutine calls: call, return 1
Depends on the number of loop

Loops . . s

iterations and loop condition

Depends on the nature of the
Subprogram

subprogram

Memory access: Read, Write 1

https://medium.com/@exploreintellect/what-is-the-ram-model-of-computation-a5e4a7ce22b4
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Moore’'s Law

o Moore’s “law” is the observation that the number
of transistors in an integrated circuit doubles about
every two years.

°Q b . . 5 1 Q S 10 Thing J « J
Moore’s Law: The number of transistors on microchips doubles every two years [eNaWSE
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years. in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.
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OurWorldinData.org - Research and data to make progress against the world's largest problems Licens: nder CC-BY by the authors Hannah Ritchie and Max Roser
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Moore’s Law Misquote
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Word RAM Model

a The word RAM (word random-access
machine) model is a model of computation
in which a random-access machine can do
arithmetic and bitwise operations on a word
of w bits in constant time.

word

o Examples: bitwise AND, OR, XOR, MSB
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Example Word RAM Algorithm

a Given two arrays, A and B, of n bits,
compute the first bit where A and B differ.

1. Compute C = A XOR B. Time: O(nh/w)
2. Repeatedly test each word of MSB for
equality with 0. Time: O(n/w).

3. For the first word, ¢, in C that is not 0,
compute MSB(¢).

o Total running time: O(n/w).
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Understanding the Orders of
Magnitude

External memory: 10 ms
Internal memory: 10 ns

1 million times slower!



The Memory Hierarchy

o The trade-off of size and speed

Capacity




Analogy: Cooking Eggs

a Suppose Anna is cooking eggs in in Irvine and
wants to add salt and pepper

o Suppose it takes her 10 seconds to go to her
pantry, get salt and pepper and add them to
her eggs



Analogy: Cooking Eggs

a If going to her pantry is like a computer
going to internal memory, then what would
be analogous to going to external memory?




Analogy: Cooking Eggs

a If going to her pantry is like a computer
going to internal memory, then what would
be analogous to going to external memory?

Walking to Chicago, buying salt and pepper,
and walking back



External Memory Model

o External memory identifies the frontier between
the highest two layers in the memory hierarchy for
a particular data set.

B = block size

M = “internal” memory size
m = M/B (number of internal blocks)

N = “external” input size
n = N/B (number of input blocks)

a The model only counts the number of reads and
writes to external memory (I/0Os). All other costs
are ignored.



B-Trees

o A version of the (a,b) tree data structure, which is the best-known
method for maintaining a map in external memory, is a “"B-tree.”

o A B-tree of order d is an (a,b) tree witha =d/2and b = d.

(11 12)(24 29)(38 40 4I)<{§-ﬁ)<}8 50 51 53 #9(59 63)(66 70)(74 75) (95 98)
dooooo

B-Trees 20



B-tree I/O Complexity

Proposition 15.2: A B-tree with n entries has I/0 complexity O(loggn) for search
or update operation, and uses O(n/B) blocks, where B is the size of a block.

o Proof:

= Each time we access a node to perform a
search or an update operation, we need
only perform a single disk transfer.

= Each search or update requires that we
examine at most O(1) nodes for each level
of the tree.
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External-Memory Sorting

a Which of these sorting algorithms is
good/bad in external memory?

o Insertion-sort
o Heapsort

o Shellsort

o Mergesort

o Quicksort

Algorithms and Architectures
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Better External-Memory Sorting

o Multi-way Merge-sort:
o Merge M/B sorted subarrays instead of 2.

o Number of I/Os: O((N/B) logums (N/B)).
o This is optimal.
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Parallel RAM (PRAM)

a Synchronous shared memory model.

= Exclusive Read (ER): p processors can
simultaneously read the content of p distinct
memory locations.

= Concurrent Read (CR): p processors can
simultaneously read the content of p’ memory
locations, where p’ < p.

= Exclusive Write (EW): p processors can
simultaneously write the content of p distinct
memory locations.

= Concurrent Write (CW): p processors can
simultaneously write the content of p” memory
locations, where p’ < p.
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PRAM Algorithms

o CRCW PRAM can compute OR of n bits in
O(1) time with n processors.

o CRCW PRAM can compute Min of n numbers
in O(1) time with n2 processors.

a Merge two sorted lists of n elements in
O(log n) time with n processors in CREW
PRAM.

o Sort n numbers in O(log? n) time with n
processors by parallel merge-sort in CREW
PRAM.
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Parallel External Memory (PEM)

a In joint work, we defined a parallel external
memory model and designed efficient algorithms
for it.
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1. INTRODUCTION

Advances in multi-core architectures are showing great
promise at demonstrating the benefits of parallelism at the
chip level. Current architectures have 2, 4, or 8 cores on
a single die, but industry insiders are predicting orders of
magnitude larger numbers of cores in the not too distance
future (12, 20, 23]. Such advances naturally imply a number
of paradigm shifts, not the least of which is the impact on
algorithm design. That Is, the coming multicore revolution
implies a compelling need for algorithmic techniques that
scale to hundreds or even thousands of cores. Parallelism
extraction at the compiler level may be able to handle part
of this load, but part of the load will also need to be carried
by parallel algorithms. This paper is directed at this latter

There is a sizable literature on algorithms for shared-
memory parallel models, most notably for variations of the
PRAM model (e.g., see [17, 18, 24]). Indeed, some re-
-ul:hq‘ (g, see [26)) advocate that PRAM algorithms

be directly imple

made that ignoring the memory hierarchy during algorithm
design worked reasonably well for the singlo-processor ar-
chitectures: in spite of recent developments In the cache-
optimal models, most algorithms implemented and used by
an average user are designed in the RAM model due to the
small size of average input sets and relative simplicity of the
RAM algorithms. However, we feel that to take advantage
of the parallelism provided by the multicore architectures,
problen-'ﬂll have to be partitioned across a large number

of processors. , the latency of the shared memory
will have  bigger impact on the overall speed of execution
of the algorithms, even If the original problem fits into the
memory of a single processor. The PRAM model contains



PEM Sorting Result

a Sorting with optimal parallel I/O complexity:

N N

N: Input size
P: # of processors
M: memory (cache) size

© o o 0

B: block (cache line) size



