Algorithm Analysis

Michael T. Goodrich
CS 165
Univ. of California, Irvine

Scalability

- Scientists often have to deal with differences in scale, from the microscopically small to the astronomically large.
- Computer scientists must also deal with scale, but they deal with it primarily in terms of data volume rather than physical object size.
- Scalability refers to the ability of a system to gracefully accommodate growing sizes of inputs or amounts of workload.

Microscope: U.S. government image, from the N.I.H. Medical Instrument Gallery, DeWitt Stetten, Jr., Museum of Medical Research. Hubble Space Telescope: U.S. government image, from NASA, STS-125 Crew, May 25, 2009.

Algorithms and Data Structures

- An algorithm is a step-by-step procedure for performing some task in a finite amount of time.
- Typically, an algorithm takes input data and produces an output based upon it.

- A data structure is a systematic way of organizing and accessing data.

Running Times

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus primarily on the worst case running time.
- Theoretical analysis
- Might not capture real-world
 performance

Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition, noting the time needed:
- Plot the results
- Try to match a curve to the times

Choose the Right Type of Plot

- Linear growth

Linear growth

Choose the Right Type of Plot

- Polynomial growth

Polynomial growth

Choose the Right Type of Plot

- Exponential growth

Exponential growth

Seven Important Functions

- Seven functions that often appear in algorithm ${ }^{1 E+30}$ analysis:
- Constant ≈ 1
- Logarithmic $\approx \log n$
- Linear $\approx n$
- $\mathrm{N}-\log -\mathrm{N} \approx n \log n$
- Quadratic $\approx n^{2}$
- Cubic $\approx n^{3}$
- Exponential $\approx 2^{n}$
- In a log-log chart, the slope of the line corresponds to the exponent in the growth rate

Slope in a log-log plot

- The reason the slope of a straight line in a log-log plot corresponds to the exponent in the running time:
$y=n^{c}$
$\log y=\log n^{c}$
$\log y=c^{*} \log n$

Slide by Matt Stallmann included with permission.

Why Growth Rate Matters

Constant Factors (log-log plot)

- The growth rate is minimally affected by

Big-Oh Notation

- Given functions $f(n)$ and $g(n)$, we say that $f(n)$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n})$) if there are positive constants c and n_{0} such that

$$
f(n) \leq \operatorname{cg}(n) \text { for } n \geq n_{0}
$$

- Example: $2 \boldsymbol{n}+10$ is $\boldsymbol{O}(\boldsymbol{n})$
- $2 \boldsymbol{n}+10 \leq c n$
- $(c-2) n \geq 10$
- $n \geq 10 /(c-2)$

- Pick $\boldsymbol{c}=3$ and $\boldsymbol{n}_{\mathbf{0}}=10$

Big-Oh Example

Example: the function
\boldsymbol{n}^{2} IS not $\boldsymbol{O}(\boldsymbol{n})$
• $\boldsymbol{n}^{2} \leq \boldsymbol{c n}$
$\boldsymbol{n} \leq \boldsymbol{c}$

Big-Oh Rules

- If is $f(n)$ a polynomial of degree d, then $f(n)$ is $\boldsymbol{O}\left(n^{d}\right)$, i.e.,

1. Drop lower-order terms
2. Drop constant factors

- Use the smallest possible class of functions
- Say " $2 \boldsymbol{n}$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $2 \boldsymbol{n}$ is $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$ "
- Use the simplest expression of the class
- Say " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(\boldsymbol{n})$ " instead of " $3 \boldsymbol{n}+5$ is $\boldsymbol{O}(3 \boldsymbol{n})$ "

Relatives of Big-Oh

big-Omega

- $\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$ if there is a constant $\mathrm{c}>0$ and an integer constant $n_{0} \geq 1$ such that

$$
f(n) \geq c g(n) \text { for } n \geq n_{0}
$$

big-Theta

- $f(n)$ is $\Theta(g(n))$ if there are constants $c^{\prime}>0$ and $c^{\prime \prime}>0$ and an integer constant $n_{0} \geq 1$ such that

$$
c^{\prime} g(n) \leq f(n) \leq c^{\prime \prime} g(n) \text { for } n \geq n_{0}
$$

Intuition for Asymptotic Notation

big-Oh

- $f(n)$ is $O(g(n))$ if $f(n)$ is asymptotically less than or equal to $g(n)$
big-Omega
- $f(n)$ is $\Omega(g(n))$ if $f(n)$ is asymptotically greater than or equal to $\mathrm{g}(\mathrm{n})$
big-Theta
- $f(n)$ is $\Theta(g(n))$ if $f(n)$ is asymptotically equal to $\mathrm{g}(\mathrm{n})$

