Algorithm Analysis

Michael T. Goodrich CS 165 Univ. of California, Irvine

Scalability

- Scientists often have to deal with differences in scale, from the microscopically small to the astronomically large.
- Computer scientists must also deal with scale, but they deal with it primarily in terms of data volume rather than physical object size.
- Scalability refers to the ability of a system to gracefully accommodate growing sizes of inputs or amounts of workload.

Microscope: U.S. government image, from the N.I.H. Medical Instrument Gallery, DeWitt Stetten, Jr., Museum of Medical Research. Hubble Space Telescope: U.S. government image, from NASA, STS-125 Crew, May 25, 2009.

Algorithms and Data Structures

- An algorithm is a step-by-step procedure for performing some task in a finite amount of time.
 - Typically, an algorithm takes input data and produces an output based upon it.

A data structure is a systematic way of organizing and accessing data.

Running Times

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus primarily on the worst case running time.
 - Theoretical analysis
 - Might not capture real-world performance

Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition, noting the time needed:
- Plot the results
- Try to match a curve to the times

Choose the Right Type of Plot

Linear growth

Linear growth

Algorithm Analysis Image from https://medium.com/@scajanus/types-of-growth-and-how-to-show-them-4de77918dc2e

Choose the Right Type of Plot

Polynomial growth

Polynomial growth

Algorithm Analysis Image from https://medium.com/@scajanus/types-of-growth-and-how-to-show-them-4de77918dc2e

Choose the Right Type of Plot

Exponential growth

Exponential growth

Algorithm Analysis Image from https://medium.com/@scajanus/types-of-growth-and-how-to-show-them-4de77918dc2e

Seven Important Functions

- Seven functions that often appear in algorithm ^{1E+30} ^{1E+28} ^{1E+26}
 - Constant ≈ 1
 - Logarithmic $\approx \log n$
 - Linear $\approx n$
 - N-Log-N $\approx n \log n$
 - Quadratic $\approx n^2$
 - Cubic $\approx n^3$
 - Exponential $\approx 2^n$
- In a log-log chart, the slope of the line corresponds to the exponent in the growth rate

Slope in a log-log plot

 The reason the slope of a straight line in a log-log plot corresponds to the exponent in the running time:

> $y = n^{c}$ log y = log n^c log y = c*log n

Why Growth Rate Matters

if runtime is	time for n + 1	time for 2 n	time for 4 n	
c lg n	c lg (n + 1)	c (lg n + 1)	c(lg n + 2)	
c n	c (n + 1)	2c n	4c n	
c n lg n	~cnlgn +cn	2c n lg n + 2cn	4c n lg n + 4cn	
c n²	~ c n² + 2c n	4c n ²	16c n ²	•
c n ³	~ c n ³ + 3c n ²	8c n ³	64c n ³	
c 2 ⁿ	c 2 ⁿ⁺¹	c 2 ²ⁿ	c 2 ⁴ⁿ	

runtime quadruples when problem size doubles

Constant Factors (log-log plot)

- The growth rate is minimally affected by
 - constant factors or
 - lower-order terms
- Examples
 - $10^2 n + 10^5$ is a linear function
 - $10^5 n^2 + 10^8 n$ is a quadratic function

Big-Oh Notation

- Given functions f(n) and g(n), we say that f(n) is O(g(n)) if there are positive constants c and n_0 such that
 - $f(n) \leq cg(n)$ for $n \geq n_0$
- **Example:** 2n + 10 is O(n)
 - $2n + 10 \le cn$
 - $(c-2) n \ge 10$
 - $n \ge 10/(c-2)$
 - Pick c = 3 and $n_0 = 10$

Big-Oh Example

- Example: the function n^2 is not O(n)
 - $\bullet n^2 \leq cn$
 - $\bullet \quad n \leq c$
 - The above inequality cannot be satisfied since c must be a constant

Big-Oh Rules

If is f(n) a polynomial of degree d, then f(n) is
O(n^d), i.e.,

- 1. Drop lower-order terms
- 2. Drop constant factors

Use the smallest possible class of functions

• Say "2n is O(n)" instead of "2n is $O(n^2)$ "

□ Use the simplest expression of the class

• Say "3n + 5 is O(n)" instead of "3n + 5 is O(3n)"

Relatives of Big-Oh

big-Omega

• f(n) is $\Omega(g(n))$ if there is a constant c > 0and an integer constant $n_0 \ge 1$ such that $f(n) \ge c g(n)$ for $n \ge n_0$

big-Theta

• f(n) is $\Theta(g(n))$ if there are constants c' > 0 and c'' > 0 and an integer constant $n_0 \ge 1$ such that $c'g(n) \le f(n) \le c''g(n)$ for $n \ge n_0$

Intuition for Asymptotic Notation

big-Oh

- f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)
- big-Omega
 - f(n) is Ω(g(n)) if f(n) is asymptotically greater than or equal to g(n)

big-Theta

 f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n)