Approximation Algorithms

Michael T. Goodrich

Applications

- One of the most time-consuming parts of astronomy involves collecting the light from the galaxy or star over a given period of time.
- To do this with a telescope, a large aluminum disk the size of the diameter of the telescope is used.
- This disk is placed in the focal plane of the telescope, so that the light from each stellar objects in an observation falls in a specific spot on the disk.
- The astronomers use robotic drilling equipment to drill a hole in each spot of interest and they insert a fiber-optic cable into each such hole and connect it to a spectrograph.

Application to TSP

- Drilling the holes in the fastest way is an instance of the traveling salesperson problem (TSP).

- According to this formulation of TSP, each of the hole locations is a "city" and the time it takes to move a robot drill from one hole to another corresponds to the distance between the "citie" for these two holes.
- Thus, a minimum-distance tour of the cities that starts and ends at the resting position for the robot drill is one that will drill the holes the fastest.
- Unfortunately, TSP is NP-complete.
- So it would be ideal if we could at least approximate this problem.

Application to Set Cover

- Another optimization problem is to minimize the number of observations needed in order to collect the spectra of all the stellar objects of interest.
- In this case, we want to cover the map of objects with the minimum number of disks having the same diameter as the telescope.
- This optimization problem is an instance of the set cover problem.
- Each of the distinct sets of objects that can be included in a single observation is given as an input set and the optimization problem is to minimize the number of sets whose union includes all the objects of interest.
- This problem is also NP-complete, but it is a problem for which an approximation to the optimum might be sufficient.

Set Cover Example

Figure 18.2: An example disk cover for a set of significant stellar objects (smaller objects are not included). Background image is from Omega Centauri, 2009. U.S. government image. Credit: NASA, ESA, and the Hubble SM4 ERO team.

Approximation Ratios

* Optimization Problems

- We have some problem instance x that has many feasible "solutions".
- We are trying to minimize (or maximize) some cost function $c(S)$ for a "solution" S to x. For example,
- Finding a minimum spanning tree of a graph
- Finding a smallest vertex cover of a graph
- Finding a smallest traveling salesperson tour in a graph
- An approximation produces a solution T
- T is a k-approximation to the optimal solution OPT if $c(T) / c(O P T) \leq k$ (assuming a min. prob.; a maximization approximation would be the reverse)

Special Case of the Traveling Salesperson Problem

* OPT-TSP: Given a complete, weighted graph, find a cycle of minimum cost that visits each vertex.
- OPT-TSP is NP-hard
- Special case: edge weights satisfy the triangle inequality (which is common in many applications):
- $w(a, b)+w(b, c) \geq w(a, c)$

A 2-Approximation for TSP

 Special Case
Algorithm TSPApprox(G)

Input weighted complete graph \boldsymbol{G}, satisfying the triangle inequality
Output a TSP tour \boldsymbol{T} for \boldsymbol{G}
$M \leftarrow$ a minimum spanning tree for \boldsymbol{G}
$\boldsymbol{P} \leftarrow$ an Euler tour traversal of \boldsymbol{M}, starting at some vertex \boldsymbol{s}
$T \leftarrow$ empty list
for each vertex \boldsymbol{v} in \boldsymbol{P} (in traversal order) if this is \boldsymbol{v} 's first appearance in \boldsymbol{P} then T.insertLast(v)
T.insertLast(s)
return T

Euler tour P of MST M

Output tour T

A 2-Approximation for TSP Special Case - Proof

- The optimal tour is a spanning tour; hence $|\mathrm{M}| \leq|\mathrm{OPT}|$.
* The Euler tour P visits each edge of M twice; hence $|\mathrm{P}|=2|\mathrm{M}|$
- Each time we shortcut a vertex in the Euler Tour we will not increase the total length, by the triangle inequality $(w(a, b)+w(b, c) \geq$ $w(a, c))$; hence, $|T| \leq|P|$.
- Therefore, $|\mathrm{T}| \leq|\mathrm{P}|=2|\mathrm{M}| \leq 2|\mathrm{OPT}|$

Output tour T (at most the cost of P)

Euler tour P of MST M (twice the cost of M)

Optimal tour $O P T$ (at least the cost of MST M)

Vertex Cover

- A vertex cover of graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is a subset W of V , such that, for every (a, b) in E, a is in W or b is in W.
- OPT-VERTEX-COVER: Given an graph G, find a vertex cover of G with smallest size.
- OPT-VERTEX-COVER is NP-hard.

A 2-Approximation for Vertex Cover

- Every chosen edge e has both ends in C
- But e must be covered by an optimal cover; hence, one end of e must be in OPT
- Thus, there is at most twice as many vertices in C as in OPT.
- That is, C is a 2-approx. of OPT
- Running time: $\mathrm{O}(\mathrm{n}+\mathrm{m})$

Set Cover (Greedy Algorithm)

- OPT-SET-COVER: Given a collection of m sets, find the smallest number of them whose union is the same as the whole collection of m sets?
- OPT-SET-COVER is NP-hard
- Greedy approach produces an O(log n)-approximation algorithm.

Algorithm SetCoverApprox (S) :
Input: A collection S of sets $S_{1}, S_{2}, \ldots, S_{m}$ whose union is U
Output: A small set cover C for S
$C \leftarrow \emptyset \quad / /$ The set cover built so far
$E \leftarrow \emptyset \quad / /$ The elements from U currently covered by C while $E \neq U$ do
select a set S_{i} that has the maximum number of uncovered elements add S_{i} to C
$E \leftarrow E \cup S_{i}$
Return C.

Greedy Set Cover Analysis

- Consider the moment in our algorithm when a set S_{j} is added to C, and let k be the number of previously uncovered elements in S_{j}.
- We pay a total charge of 1 to add this set to C, so we charge each previously uncovered element i of S_{j} a charge of $c(i)=1 / k$.
- Thus, the total size of our cover is equal to the total charges made.
- To prove an approximation bound, we will consider the charges made to the elements in each subset S_{j} that belongs to an optimal cover, C^{\prime}. So, suppose that S_{j} belongs to C^{\prime}.
Let us write $S_{j}=\left\{x_{1}, x_{2}, \ldots, x_{n j}\right\}$ so that S_{j} 's elements are listed in the order in which they are covered by our algorithm.

Greedy Set Cover Analysis, cont.

Now, consider the iteration in which x_{1} is first covered. At that moment, S_{j} has not yet been selected; hence, whichever set is selected must have at least n_{j} uncovered elements. Thus, x_{1} is charged at most $1 / n_{j}$. So let us consider, then, the moment our algorithm charges an element x_{l} of S_{j}. In the worst case, we will have not yet chosen S_{j} (indeed, our algorithm may never choose this S_{j}). Whichever set is chosen in this iteration has, in the worst case, at least $n_{j}-l+1$ uncovered elements; hence, x_{l} is charged at most $1 /\left(n_{j}-l+1\right)$. Therefore, the total amount charged to all the elements of S_{j} is at most|

$$
\sum_{l=1}^{n_{j}} \frac{1}{n_{l}-l+1}=\sum_{l=1}^{n_{j}} \frac{1}{l}
$$

which is the familiar harmonic number, $H_{n_{i}}$. It is well known (for example, see the Appendix) that $H_{n_{j}}$ is $O\left(\log n_{j}\right)$. Let $c\left(S_{j}\right)$ denote the total charges given to all the elements of a set S_{j} that belongs to the optimal cover C^{\prime}. Our charging scheme implies that $c\left(S_{j}\right)$ is $O\left(\log n_{j}\right)$. Thus, summing over the sets of C^{\prime}, we obtain

$$
\begin{aligned}
\sum_{S_{j} \in C^{\prime}} c\left(S_{j}\right) & \leq \sum_{S_{j} \in C^{\prime}} b \log n_{j} \\
& \leq b\left|C^{\prime}\right| \log n
\end{aligned}
$$

for some constant $b \geq 1$. But, since C^{\prime} is a set cover,

$$
\sum_{i \in U} c(i) \leq \sum_{S_{j} \in C^{\prime}} c\left(S_{j}\right)
$$

Therefore,

$$
|C| \leq b\left|C^{\prime}\right| \log n
$$

Polynomial-Time Approximation

Schemes

A problem L has a polynomial-time approximation scheme (PTAS) if it has a polynomial-time ($1+\varepsilon$)-approximation algorithm, for any fixed $\varepsilon>0$ (this value can appear in the running time).
0/1 Knapsack has a PTAS, with a running time that is $\mathrm{O}\left(\mathrm{n}^{3} / \varepsilon\right)$.

