Bin Packing

Michael T. Goodrich

Some slides adapted from slides from
• Professor C. L. Liu, Tsing Hua University
• Professor Teofilo F. Gonzalez, UCSB
Bin Packing Example

The bins; (capacity 1)

Items to be packed
Bin Packing Problem Definition

- Given n items with sizes s_1, s_2, \ldots, s_n such that $0 \leq s_i \leq 1$ for $1 \leq i \leq n$, pack them into the fewest number of unit capacity bins.
- Problem is NP-hard (NP-Complete for the decision version).
- There is no known polynomial time algorithm for its solution, and it is conjectured that none exists.
Example Applications

Filling recycle bins

Loading trucks
Historical Application

- Mix tapes
Bin Packing Optimal Solution

Bin Packing Problem

Optimal Packing

$M_{\text{Opt}} = 4$
Next-Fit (NF) Algorithm

- Check to see if the current item fits in the current bin. If so, then place it there, otherwise start a new bin.
Next Fit (NF) Packing Algorithm Example

Bin Packing Problem

0.5 0.7 0.5 0.2 0.4 0.2 0.5 0.1 0.6

Next Fit Packing Algorithm

$M_{\text{Opt}} = 4$

$M = 6$
Approximation Ratios

• **Approximation Algorithm:**

 – Not an optimal solution, but with some performance ratio guarantee for a given problem instance, I

 (e.g., no worst than *twice the optimal*)

• **Approx. Ratio** = \(\frac{\text{Alg}(I)}{\text{Opt}(I)} \)
Next Fit (NF) Approximation Ratio

• Theorem: Let \(M \) be the number of bins required to pack a list \(I \) of items optimally. Next Fit will use at most \(2M \) bins.

• Proof:

 Let \(s(B_i) \) be the sum of sizes of the items assigned to bin \(B_i \) in the Next Fit solution.

 For any two adjacent bins \((B_j \text{ and } B_{j+1})\), we know that \(s(B_j) + s(B_{j+1}) > 1 \).
Next Fit (NF) Approximation Ratio

• Let k be the number of bins used by Next Fit for list I. We prove the case when k is even (odd case is similar).

- As stated above, $s(B_1) + s(B_2) > 1$, $s(B_3) + s(B_4) > 1$, ..., $s(B_{k-1}) + s(B_k) > 1$.

- Adding these inequalities we know that $\sum s(B_i) > k/2$.

- By definition $OPT = M| > k/2$.

- The solution $SOL = k < 2M$.
Next Fit (NF) Lower Bound

• There exist sequences such that Next Fit uses $2M - 2$ bins, where M is the number of bins in an optimal solution.

• Proof:

 • The odd numbered ones have s_i value $1/2$, and the even number ones have s_i value $1/(2N)$.

 - $OPT = N + 1 = M$
 - Therefore, $N = M - 1$
 - Solution $SOL = 2N = 2M - 2$.
First Fit (FF) Algorithm

- Scan the bins in order and place the new item in the first bin that is large enough to hold it. A new bin is created only when an item does not fit in the previous bins.
First Fit (FF) Packing Algorithm Example

Next Fit Packing Algorithm

First Fit Packing Algorithm

$M = 5$
Running Time for First Fit

- Easily implemented in $O(n^2)$ time
- Can be implemented in $O(n \log n)$ time:
 - Idea: Use a balanced search tree with height $O(\log n)$.
 - Each node has three values: index of bin, remaining capacity of bin, and best (largest) in all the bins represented by the subtree rooted at the node.
 - The ordering of the tree is by bin index.
Faster First-Fit (FF) Algorithm

- 8 bins:

<table>
<thead>
<tr>
<th>Bin</th>
<th>B_1</th>
<th>B_2</th>
<th>B_3</th>
<th>B_4</th>
<th>B_5</th>
<th>B_6</th>
<th>B_7</th>
<th>B_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>R. Cap.</td>
<td>.3</td>
<td>.4</td>
<td>.32</td>
<td>.45</td>
<td>.46</td>
<td>.47</td>
<td>.32</td>
<td>48</td>
</tr>
</tbody>
</table>

Item Size

- $s \leq .3$ goes to Bin B_1
- $3 < s \leq .4$ goes to Bin B_2
- $4 < s \leq .45$ goes to Bin B_4
- $A5 < s \leq .46$ goes to Bin B_5
- $46 < s \leq .47$ goes to Bin B_6
- $A7 < s \leq .48$ goes to Bin B_8
First-Fit (FF) Approx. Ratio

• Let M be the optimal number of bins required to pack a list I of items. Then First Fit never uses more than $\lceil 1.7M \rceil$.

• Proof:
 – [omitted]
First-Fit (FF) Approx. Ratio

• There exist sequences such that First Fit uses 1.6666…(M) bins.

• Proof:

 • 6M items of size \(\frac{1}{7} + \epsilon \).
 • 6M items of size \(\frac{1}{3} + \epsilon \).
 • 6M items of size \(\frac{1}{2} + \epsilon \).
First-Fit (FF) Lower Bound

• First Fit uses 10M bins, but optimal uses 6M
Best Fit Algorithm (BF)

- New item is placed in a bin where it fits the tightest. If it does not fit in any bin, then start a new bin.
- Can be implemented in $O(n \log n)$ time, by using a balanced binary tree storing bins ordered by remaining capacity.
Example for Best Fit (BF)

- $I = (0.2, 0.5, 0.4, 0.7, 0.1, 0.3, 0.8)$
Other Heuristics

• First Fit Decreasing (FFD): First order the items by size, from largest to smallest, then run the First Fit Algorithm.

• Best Fit Decreasing (BFD): First order the items by size, from largest to smallest, then run the Best Fit Algorithm.
Experiments

• It is difficult to experimentally compute approximation ratios.
 – It requires that we know the optimal solution to an NP-hard problem!

• But we can do experiments for a related parameter:

• Define the *waste*, $W(A)$, for a bin-packing algorithm A to be the number of bins that it uses minus the total size of all n items.
Experiments

• We are interested in experiments for estimating the waste, \(W(A) \), as a function of \(n \) and as \(n \) grows towards infinity, for random items uniformly distributed in the interval \((0,1)\), for the following algorithms:
 – \(A = \text{Next Fit (NF)} \)
 – \(A = \text{First Fit (FF)} \)
 – \(A = \text{Best Fit (BF)} \)
 – \(A = \text{First Fit Decreasing (FFD)} \)
 – \(A = \text{Best Fit Decreasing (BFD)} \)