Floating Point Most slides from CMU 213

Fractional Binary Numbers

2-5

Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-j}^{i} b_k \cdot 2^k$$

Frac. Binary Number Examples

Value 5 3/4 2 7/8

Representation 101.11_{2} 10.111_{2}

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form 0.111111...2 just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^{i} + ... \rightarrow 1.0$
 - Use notation 1.0 ϵ

Representable Numbers

Limitation

- Can only exactly represent numbers of the form x/2^k
- Other numbers have repeating bit representations

Value	Representation	
1/3	$0.01010101[01]{2}$	
1/5	0.001100110011[0011	
1/10	0.0001100110011[001	

This is where we need to slightly sacrifice precision when storing these numbers

]...2 .1]...2

Floating Point Representation

Numerical Form

- (-1)^s M 2^E
 - Sign bit s determines whether number is negative or positive
 - Significand *M* normally a fractional value in range [1.0,2.0).
 - Exponent *E* weights value by power of two

Example: $15213_{10} = (-1)^0 \times 1.1101101101_2, \times 2^{13}$

Encoding exp S

- MSB is sign bit
- exp field encodes E (but is not equal to E)
- frac field encodes M (but is not equal to M)

frac

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
 - Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by Numerical Concerns

- Nice standards for rounding, overflow, underflow
- Hard to make go fast
 - Numerical analysts predominated over hardware types in defining standard

Drawback

- Naturally, it cannot represent all real numbers accuratelyN
 - reducing a little precision.

• It cannot store recurring digits in base 10 like 1/3, so these numbers are always rounded down slightly. It allows use to store very small and also large numbers by

IEEE Precision Options

Numbers are stored in scientific notation

Single precision: 32 bits -> approximately $\pm 10^{38}$

s	ехр	frac
1	8-bits	23-bits

♦ Double precision: 64 bits —> approximately ± 10 ^ 308

S	5	exp	frac	
1	L	11-bits		52-b

oits

"Normalized" Numeric Values

Condition

• $exp \neq 000...0$ and $exp \neq 111...1$

Exponent coded as *biased* value

- E = Exp Bias
- Exp : unsigned value denoted by exp
- Bias : Bias value
- » Single precision: 127 (*Exp*: 1...254, *E*: -126...127)
- » Double precision: 1023 (*Exp*: 1...2046, *E*: -1022...1023)
- » in general: *Bias* = 2^{e-1} 1, where e is number of exponent bits

Significand coded with implied leading 1

- $M = 1.\mathbf{x}\mathbf{x}\mathbf{x}...\mathbf{x}_2$
- XXX...X: bits of frac
- Minimum when 000...0 (M = 1.0)
- Maximum when 111...1 (*M* = 2.0 ϵ)
- Get extra leading bit for "free"

An Example of a Normalized Float

Value Float F •15213 ₁₀	= 15213.0; = 111011011011	$01_2 = 1.110110110$				
Significand $M = 1.1101101101_2$ frac = 1101101101101_000000000_2						
ExponentE=Bias=E=	13 127 Exp – Bias –	Exp = 13 +				
S	exp					
0	10001100	110110110110				

1101₂ X 2¹³

 $127 = 140 = 10001100_2$

frac

1000000000

Denormalized Values

Condition

• exp = 000...0

Value

- Exponent value E = -Bias + 1
- Significand value $M = 0.xxx...x_2$
 - xxx...x: bits of frac

Cases

- exp = 000...0, frac = 000...0
 - Represents value 0
 - Note that have distinct values +0 and -0
- $exp = 000...0, frac \neq 000...0$
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - "Gradual underflow"

Special Values

Condition

- exp = 111...1
- Cases
 - exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -\infty$
 - exp = 111...1, $frac \neq 000...0$
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., sqrt(−1), ∞ − ∞

Operations on Floating Points

- Summing floating numbers:
 - It has a relative error, epsilon

• (a + b) + c! = a + (b + c)

- Designing efficient algorithms for computing a faithfully rounded floating-point is challenging
- Proposed several efficient parallel algorithms for summing *n* floating point numbers, so as to produce a faithfully rounded floating-point representation of the sum. [Michael T. Goodrich, Ahmed Eldawy 2016]

Operations on Floating Points (cont.)

- Comparison is tricky:
 - If involved equality, Due to rounding errors, it demands special measures
 - Next slide shows you how to handle it

Floating Point Comparison

```
root [0] double capacity = 1.0
(double) 1.0000000
```

```
root [1] capacity -= 0.8
(double) 0.20000000
```

```
root [2] capacity -= 0.1
(double) 0.10000000
```

```
root [3] double item = 0.1
(double) 0.10000000
```

```
root [4] item <= capacity
(bool) false
```

```
root [5] delta = item - capacity
(double) 5.5511151e-17
```


root [6] double epsilon = 1e-6(double) 1.0000000e-06 root [7] equal = fabs(delta) < epsilon (bool) true root [8] item < capacity || equal (bool) true root [9] bool equals(double a, double b){ root[10] return fabs(a - b) < 1e-6; root[11] } root[12] item < capacity || equals(...) (bool true)