
Floating Point
Most slides from CMU 213

15-213, F’02

Fractional Binary Numbers

Representation
■ Bits to right of “binary point” represent fractional powers of 2

■ Represents rational number:

bi bi–1 b2 b1 b0 b–1 b–2 b–3 b–j• • •• • • .
1
2
4

2i–1

2i

• • •

• • •
1/2
1/4
1/8

2–j

bk ⋅2
k

k=− j

i
∑

15-213, F’02

Frac. Binary Number Examples
Value Representation

5 3/4	 101.112

2 7/8	 10.1112

Observations
■ Divide by 2 by shifting right

■ Multiply by 2 by shifting left

■ Numbers of form 0.111111…2 just below 1.0

● 1/2 + 1/4 + 1/8 + … + 1/2i + … → 1.0

●Use notation 1.0 – ε

15-213, F’02

Representable Numbers
Limitation
■ Can only exactly represent numbers of the form x/2k

■ Other numbers have repeating bit representations

Value Representation
1/3	 0.0101010101[01]…2

1/5	 0.001100110011[0011]…2

1/10	 0.0001100110011[0011]…2

This is where we need to slightly sacrifice precision when storing these numbers

15-213, F’02

Numerical Form
■ (–1)s M 2E

●Sign bit s determines whether number is negative or positive

●Significand M normally a fractional value in range [1.0,2.0).

●Exponent E weights value by power of two

Encoding

■ MSB is sign bit

■ exp field encodes E (but is not equal to E)
■ frac field encodes M (but is not equal to M)

Floating Point Representation

s exp frac

15-213, F’02

IEEE Floating Point

IEEE Standard 754
■ Established in 1985 as uniform standard for floating point arithmetic

● Before that, many idiosyncratic formats

■ Supported by all major CPUs

Driven by Numerical Concerns
■ Nice standards for rounding, overflow, underflow

■ Hard to make go fast

● Numerical analysts predominated over hardware types in defining standard

Drawback
■ Naturally, it cannot represent all real numbers accuratelyN

● It cannot store recurring digits in base 10 like 1/3, so these numbers are always

rounded down slightly. It allows use to store very small and also large numbers by
reducing a little precision.

15-213, F’02

IEEE Precision Options
Numbers are stored in scientific notation

◊ Single precision: 32 bits —> approximately ± 10 ^ 38

◊ Double precision: 64 bits —> approximately ± 10 ^ 308

15-213, F’02

“Normalized” Numeric Values
Condition
■ exp ≠ 000…0 and exp ≠ 111…1

Exponent coded as biased value
 E = Exp – Bias

●Exp : unsigned value denoted by exp

●Bias : Bias value

» Single precision: 127 (Exp: 1…254, E: -126…127)

» Double precision: 1023 (Exp: 1…2046, E: -1022…1023)

» in general: Bias = 2e-1 - 1, where e is number of exponent bits

Significand coded with implied leading 1
 M = 1.xxx…x2

● xxx…x: bits of frac
●Minimum when 000…0 (M = 1.0)

●Maximum when 111…1 (M = 2.0 – ε)

●Get extra leading bit for “free”

15-213, F’02

An Example of a Normalized Float
Value
Float F = 15213.0;

■1521310 = 111011011011012 = 1.11011011011012 X 213

Significand
M 	= 	 1.11011011011012
frac	= 	 110110110110100000000002

Exponent
E	 	 = 	 13
Bias 	 = 	 127
E = Exp – Bias Exp 	 = 13 + 127 = 140 = 100011002

0 10001100

expS

11011011011010000000000

frac

15-213, F’02

Denormalized Values
Condition
■ exp = 000…0

Value
■ Exponent value E = –Bias + 1

■ Significand value M = 0.xxx…x2

● xxx…x: bits of frac

Cases
■ exp = 000…0, frac = 000…0

● Represents value 0

● Note that have distinct values +0 and –0

■ exp = 000…0, frac ≠ 000…0

● Numbers very close to 0.0

● Lose precision as get smaller

● “Gradual underflow”

15-213, F’02

Special Values
Condition
■ exp = 111…1

Cases
■ exp = 111…1, frac = 000…0

● Represents value ∞ (infinity)

● Operation that overflows

● Both positive and negative

● E.g., 1.0/0.0 = −1.0/−0.0 = +∞, 1.0/−0.0 = −∞

■ exp = 111…1, frac ≠ 000…0

● Not-a-Number (NaN)

● Represents case when no numeric value can be determined

● E.g., sqrt(–1), ∞ − ∞

15-213, F’02

Operations on Floating Points
• Summing floating numbers:

• It has a relative error, epsilon

• (a + b) + c != a + (b + c)
• Designing efficient algorithms for computing a

faithfully rounded floating-point is challenging

• Proposed several efficient parallel algorithms for
summing n floating point numbers, so as to
produce a faithfully rounded floating-point
representation of the sum. [Michael T. Goodrich,
Ahmed Eldawy 2016]

15-213, F’02

Operations on Floating Points (cont.)
• Comparison is tricky:

• If involved equality, Due to rounding errors, it
demands special measures

• Next slide shows you how to handle it

15-213, F’02

Floating Point Comparison

