Floating Point

Most slides from CMU 213

Fractional Binary Numbers

Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$
\sum_{k=-j}^{i} b_{k} \cdot 2^{k}
$$

Frac. Binary Number Examples

Value	Representation
$53 / 4$	101.11_{2}
$27 / 8$	10.111_{2}

Observations

- Divide by 2 by shifting right
- Multiply by 2 by shifting left
- Numbers of form $0.111111 \ldots 2$ just below 1.0
$-1 / 2+1 / 4+1 / 8+\ldots+1 / 2^{i}+\ldots \rightarrow 1.0$
- Use notation $1.0-\varepsilon$

Representable Numbers

Limitation

- Can only exactly represent numbers of the form $x / 2^{k}$
- Other numbers have repeating bit representations

Value	Representation
$1 / 3$	$0.0101010101[01] \ldots 2$
$1 / 5$	$0.001100110011[0011] \ldots 2$
$1 / 10$	$0.0001100110011[0011] \ldots 2$

This is where we need to slightly sacrifice precision when storing these numbers

Floating Point Representation

Numerical Form

- (-1)s $M 2^{E}$
- Sign bit s determines whether number is negative or positive
- Significand M normally a fractional value in range [1.0,2.0).
- Exponent E weights value by power of two

```
Example:
```


Encoding

s	exp	frac

- MSB is sign bit
- exp field encodes E (but is not equal to E)
- frac field encodes \boldsymbol{M} (but is not equal to M)

IEEE Floating Point

IEEE Standard 754

- Established in 1985 as uniform standard for floating point arithmetic
- Before that, many idiosyncratic formats
- Supported by all major CPUs

Driven by Numerical Concerns

- Nice standards for rounding, overflow, underflow
- Hard to make go fast
- Numerical analysts predominated over hardware types in defining standard

Drawback

- Naturally, it cannot represent all real numbers accuratelyN
- It cannot store recurring digits in base 10 like $1 / 3$, so these numbers are always rounded down slightly. It allows use to store very small and also large numbers by reducing a little precision.

IEEE Precision Options

Numbers are stored in scientific notation
\diamond Single precision: 32 bits $->$ approximately $\pm 10 \wedge 38$

s	\exp	frac	
1	8-bits	23-bits	

\diamond Double precision: 64 bits $\rightarrow>$ approximately ± 10 ^ 308

s	\exp	frac	
1	11-bits	52-bits	

"Normalized" Numeric Values

Condition

- $\exp \neq 000 . . .0$ and $\exp \neq 111 . . .1$

Exponent coded as biased value

$E=E x p-B i a s$

- Exp : unsigned value denoted by exp
- Bias : Bias value
" Single precision: 127 (Exp: 1...254, E: -126...127)
" Double precision: 1023 (Exp: 1...2046, E: -1022...1023)
" in general: Bias $=\mathbf{2}^{\mathrm{e}-1} \mathbf{- 1}$, where e is number of exponent bits
Significand coded with implied leading 1
$M=1 . x x x . . x_{2}$
- xxx...x: bits of frac
- Minimum when 000...0 ($\boldsymbol{M}=\mathbf{1 . 0}$)
- Maximum when 111...1 ($\boldsymbol{M}=2.0-\varepsilon$)
- Get extra leading bit for "free"

An Example of a Normalized Float

```
Value
Float \(\mathrm{F}=15213.0\);
\(-15213_{10}=11101101101101_{2}=1.1101101101101_{2} \times 2^{13}\)
Significand
    \(M=1.1101101101101_{2}\)
frac \(=\underline{11011011011010000000000}{ }_{2}\)
Exponent
    \(E=13\)
    Bias \(=127\)
    \(E=\operatorname{Exp}-\) Bias \(\quad \operatorname{Exp}=13+127=140=10001100_{2}\)
    \(S\) exp frac
    \begin{tabular}{|l|l|l|}
\hline 0 & 10001100 & 11011011011010000000000 \\
\hline
\end{tabular}
```


Denormalized Values

Condition

- $\exp =000 . .0$

Value

- Exponent value $E=-$ Bias +1
- Significand value $M=0 . x x x . . . x_{2}$
- xxx...x: bits of frac

Cases

- exp = 000...0, frac $=000 . . .0$
- Represents value 0
- Note that have distinct values $\mathbf{+ 0}$ and $\mathbf{- 0}$
- exp = 000...0, frac $\neq 000 . .0$
- Numbers very close to 0.0
- Lose precision as get smaller
- "Gradual underflow"

Special Values

Condition

- $\exp =111$... 1

Cases

- $\exp =111 . .1$, frac $=000 . .0$
- Represents value ∞ (infinity)
- Operation that overflows
- Both positive and negative
- E.g., 1.0/0.0 = $-1.0 /-0.0=+\infty, 1.0 /-0.0=-\infty$
- $\exp =111 . . .1$, frac $\neq 000 . . .0$
- Not-a-Number (NaN)
- Represents case when no numeric value can be determined
- E.g., sqrt(-1), $\infty-\infty$

Operations on Floating Points

- Summing floating numbers:
- It has a relative error, epsilon
- $(a+b)+c!=a+(b+c)$
- Designing efficient algorithms for computing a faithfully rounded floating-point is challenging
- Proposed several efficient parallel algorithms for summing n floating point numbers, so as to produce a faithfully rounded floating-point representation of the sum. [Michael T. Goodrich, Ahmed Eldawy 2016]

Operations on Floating Points (cont.)

- Comparison is tricky:
- If involved equality, Due to rounding errors, it demands special measures
- Next slide shows you how to handle it

Floating Point Comparison

```
root [0] double capacity = 1.0
(double) 1.0000000
root [1] capacity -= 0.8
(double) 0.20000000
root [2] capacity -= 0.1
(double) 0.10000000
root [3] double item = 0.1
(double) 0.10000000
root [4] item <= capacity
(bool) false
root [5] delta = item - capacity
(double) 5.5511151e-17
```

