
NP-Completeness 1

A Gentle Introduction to
NP-Completeness

x1 x3x2x1 x4x3x2 x4

11

12

13 21

22

23 31

32

33

Michael T. Goodrich

NP-Completeness 2

Dealing with Hard Problems
What to do when we find a problem
that looks hard…

I couldn’t find a polynomial-time algorithm;
I guess I’m too dumb.

(cartoon inspired by [Garey-Johnson, 79])

NP-Completeness 3

Dealing with Hard Problems
NP-completeness let’s us show
collectively that a problem is hard.

I couldn’t find a polynomial-time algorithm,
but neither could all these other smart people.

(cartoon inspired by [Garey-Johnson, 79])

NP-Completeness 4

Polynomial-Time
Decision Problems

To simplify the notion of “hardness,” we will
focus on the following:
n Polynomial-time as the cut-off for efficiency
n Decision problems: output is 1 or 0 (“yes” or “no”)

w Examples:
w Does a text T contain a pattern P?
w Is the sequence, S, in sorted order?
w Is it possible to graduate with a Computer Science major

from UCI in 3 years without any AP credits?

NP-Completeness 5

Problems and Languages
A language L is a set of strings defined over some
alphabet Σ
Every decision algorithm A defines a language L
n L is the set consisting of every string x such that A outputs
“yes” on input x.

n We say “A accepts x’’ in this case
w Example:
w If A determines whether or not a given graph G has an

Euler tour, then the language L for A is all graphs with
Euler tours.

NP-Completeness 6

The Complexity Class P

A complexity class is a collection of languages
P is the complexity class consisting of all languages
that are accepted by polynomial-time algorithms
For each language L in P there is a polynomial-time
decision algorithm A for L.
n If n=|x|, for x in L, then A runs in p(n) time on input x.
n The function p(n) is some polynomial

NP-Completeness 7

The Complexity Class NP
We say that an algorithm is non-deterministic if it
uses the following operation:
n Choose(b): chooses a bit b
n Can be used to choose an entire string y (with |y| choices)

We say that a non-deterministic algorithm A accepts
a string x if there exists some sequence of choose
operations that causes A to output “yes” on input x.
NP is the complexity class consisting of all languages
accepted by polynomial-time non-deterministic
algorithms.

NP-Completeness 8

The Complexity Class NP
Alternate Definition

We say that an algorithm B verifies the acceptance
of a language L if and only if, for any x in L, there
exists a certificate y such that B outputs “yes” on
input (x,y).
NP is the complexity class consisting of all languages
verified by polynomial-time algorithms.

We know: P is a subset of NP.
Major open question: P=NP?
Most researchers believe that P and NP are different.

NP-Completeness Proofs 9

NP-Completeness
A language M is polynomial-time reducible to a
language L if an instance x for M can be transformed in
polynomial time to an instance x’ for L such that x is in
M if and only if x’ is in L.
n Denote this by M®L.

A problem (language) L is NP-hard if every problem in
NP is polynomial-time reducible to L.
A problem (language) is NP-complete if it is in NP and
it is NP-hard.

NP-Completeness 10

Some Thoughts
about P and NP

Belief: P is a proper subset of NP.
Implication: the NP-complete problems are the hardest in NP.
n Why: Because if we could solve an NP-complete problem in polynomial time, we

could solve every problem in NP in polynomial time.
That is, if an NP-complete problem is solvable in polynomial time,
then P=NP.
Since so many people have attempted without success to find
polynomial-time solutions to NP-complete problems, showing your
problem is NP-complete is equivalent to showing that a lot of smart
people have worked on your problem and found no polynomial-
time algorithm.
If you prove or disprove the P=NP, you will win $1 million.
n See https://en.wikipedia.org/wiki/Millennium_Prize_Problems

NP P

NP-complete
problems live here

Richard Karp

Known for publishing a landmark paper
proving 21 problems to be NP-complete.
n One of these problems is related to the bin-

packing problem we will study.
1985: Received the Turing Award.
He was also the PhD advisor for UCI
Professor Sandy Irani.

Image from https://en.wikipedia.org/wiki/Richard_M._Karp

