
Network Algorithms
Michael Goodrich

Some slides adapted from:
Networked Life (NETS) 112, Univ. of Penn., 2018, Prof. Michael Kearns

Determining the Diameter of Small World Networks, Frank W. Takes & Walter A. Kosters, Leiden University, The Netherlands
Structure and models of real-world graphs and networks, Jure Leskovec, Carnegie Mellon University

Complex (Biological) Networks, by Elhanan Borenstein, Roded Sharan, and Tomer Shlomi

§ Which is the most useful representation?
§ Should you use them in combination?

Computational
Representation of Networks

B

C

A

D

A B C D
A 0 0 1 0
B 0 0 0 0
C 0 1 0 0
D 0 1 1 0

Adjacency MatrixList or hash table of edges:
(ordered) pairs of nodes

{ (A,C) , (C,B) ,
(D,B) , (D,C) }

Adjacency List

Name:A
ngr:

p1Name:B
ngr:

Name:C
ngr:

p1

Name:D
ngr:

p1 p2

Network Structures
• Network structures characterize how

networks “look”:
– Large or small diameter?
– Number of edges: sparse or dense?
– Degree distributions: heavy/long tail with a power law?
– Clustering coefficient: high or low?

• These are empirical phenomena
• How do you compute them?

Image from https://matrix.berkeley.edu/research/social-networks-history

https://matrix.berkeley.edu/research/social-networks-history

Degree Distribution
• x axis: number of neighbors (degree)
• y axis: number of vertices with that degree

A long tail
(also known as a “heavy tail”)

Degree Distribution Algorithm
1. Compute the degree, deg(v), of each vertex, v.

– If G is represented as an adjacency list, count the number
of elements in v’s list.

2. Create a histogram count array, H, of size n, and
initialize each H[i] = 0.

3. For each vertex, v, increment H[deg(v)].
4. Plot the values of H from 0 to n-1 on a regular and

log-log scale
5. If the values on the log-log plot form a straight line,

determine its slope to find the exponent of the power
law degree distribution

Example 1
• Degree distribution without a long/heavy tail .
• Does not exhibit a power law.

x

fr
eq

ue
nc

y(
x)

log(x)

lo
g(

fr
eq

ue
nc

y(
x)

)

Example 2
• Degree distribution with a long/heavy tail .
• Does exhibit a power law, with exponent -2.5.

Slope = -2.5

Distance
• The distance between two vertices is the length of

the shortest path connecting them.
– This assumes the network has only a single connected component
– If two vertices are in different components, their distance is infinite

Image from
https://www.sci.unich.it/~francesc/teaching/network/geodesic.html

https://www.sci.unich.it/~francesc/teaching/network/geodesic.html

Diameter
• The diameter of a network is the maximum

distance between a pair of vertices in the network
– It measures how near or far typical individuals are from each other

From https://users.dimi.uniud.it/~massimo.franceschet/bottlenose/bottlenose.html

https://users.dimi.uniud.it/~massimo.franceschet/bottlenose/bottlenose.html

Definitions

Example
• A graph with diameter 6
• Numbers next to nodes denote eccentricity values

Naïve Algorithm
• Diameter is equal to the largest value returned

by an All Pairs Shortest Path (APSP) algorithm
• Brute-force: for each vertex v, execute a Breadth

First Search (BFS) from v in O(m) time to find v’s
eccentricity. Return the largest value found.

• Time complexity O(nm)
• Problematic if n = 8 million and m = 1 billion.

– If one BFS takes 6 seconds on a 3.4GHz machine,
this brute-force algorithm takes 1.5 years to compute
the diameter . . .

Heuristic Idea 1
• If we can find one of the nodes in a diameter pair,

we can compute the diameter with one more BFS.
1. Perform a BFS from a random sample of nodes,

recording nodes with maximum found distance, d.
2. Perform a BFS from all the far nodes (if small) or a

random sample of this set (if large).

Heuristic Idea 2
1. Let r be a random vertex and set Dmax = 0.
2. Perform a BFS from r.
3. Select the farthest node, w, in this BFS.
• If the distance from r to w is larger than Dmax, set

Dmax to this distance, let r = w, and repeat the above
two steps.

Plot Results as a Function of n
• If the networks exhibit the small world

phenomenon, then diameters are small.
• So plot diameters as a function of n on a lin-log

scale:

LinLogScale.png: davidfg derivative work: Autopilot [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0/)]

The log n function
looks like a straight line

Clustering Coefficient
• “friend of a friend is a friend”
• If a connects to b, and b to c,

then with high probability
a connects to c.

• Clustering coefficient C:
C = 3*number of triangles / number of 2-edge paths

C = 3*(1)/(1+1+6+0+0) = 3/8 = 0.375
v1

v2

v3

v4

v5

Jure Leskovec

• Clustering coefficient might
have a power law:

• It is speculated that in real
networks:

C=O(1) as n→∞

Clustering Coefficient (2)

Synonyms network

World Wide Web

Clustering Coefficient Algorithm
• Clustering coefficient C:

C = 3*number of triangles / number of 2-edge paths
• Computing the denominator is easy:

– For each vertex v, let deg(v) denote its degree.
– The number of paths of length 2 with v in the middle

is deg(v) choose 2 = deg(v)(deg(v)-1)/2.
– So, to get the denominator for C, sum up

deg(v)(deg(v)-1)/2 for all vertices, v, in G.

v

Number of 2-edge paths with
v in the middle is 4(3)/2 = 6.

Counting Triangles
• To get the numerator for C, we need to count the

number of triangles in the graph, G.
• Naïve algorithm:

– For every triple, u, v, w in G, see if they form a
triangle. If so, add 1 to a running count.

– Running time is O(n4) if G is represented with
an adjacency list.

v

u
w

This is bad.

Counting Triangles:
Slight Improvement

• Put every edge, (v,w), into a hash table, T, so
we can do a lookup to see if an edge exists in
O(1) expected time, i.e., with a get((v,w)).

• Slightly better naïve algorithm:
– For every triple, u, v, w in G, see if they form a

triangle. If so, add 1 to a running count.
– Running time is O(n3) expected if edges in G

are stored in a hash table.

v

u
w

This is still bad.

Graph Degeneracy
• The degeneracy of a graph is the smallest value

of d for which every subgraph has a vertex of
degree at most d.

• If a graph has degeneracy d, then there exists
an ordering of the vertices of G in which each
vertex has at most d neighbors that are earlier in
the ordering.

An ordering for a
graph with degeneracy 2:

Public domain image by David Eppstein

Real-World Graphs
• Real-world graphs tend to have small

degeneracy, d.

Data from “Listing All Maximal Cliques in Large Sparse Real-World Graphs,” by David Eppstein and Darren Strash

Degeneracy Ordering Algorithm
• Degeneracy can be computed by a simple greedy

algorithm:
– Repeatedly find and remove the vertex of

smallest degree, adding it to the end of the list.
– The degeneracy is then the highest degree, d,

of any vertex at the moment it is removed.
– The ordering is a d-degeneracy ordering.

Public domain image by David Eppstein

2-degeneracy
ordering

Linear-time Implementation
1. Initialize an output list, L, to be empty.
2. Compute a number, dv, for each vertex v in G, which is the number of

neighbors of v that are not already in L. Initially, dv is just the degrees of v.
3. Initialize an array D such that D[i] contains a list of the vertices v that are not

already in L for which dv = i.
4. Let Nv be a list of the neighbors of v that come before v in L. Initially, Nv is

empty for every vertex v.
5. Initialize k to 0.
6. Repeat n times:

– Let i be the smallest index such that D[i] is nonempty.
– Set k to max(k, i).
– Select a vertex v from D[i]. Add v to the beginning of L and remove it

from D[i]. Mark v as being in L (e.g., using a hash table, HL).
– For each neighbor w of v not already in L (you can check this using HL):

• Subtract one from dw

• Move w to the cell of D corresponding to the new value of dw , i.e., D[dw]
• Add w to Nv

Triangle Counting Algorithm
• Compute a d-degeneracy ordering of the vertices,

e.g., using the algorithm of the previous slide.
• Process the vertices according to this ordering, L:

For each vertex, v:
For each pair of vertices, u and w, adjacent to v
and earlier in the ordering, i.e., u and v are in the
list Nv from the degeneracy algorithm:

If (u,w) is an edge in the graph, then add one
to the triangle count.

• Running time is O(d2n) = O(dm) expected, assuming
edges are stored in a hash table.

