Network Algorithms

Michael Goodrich

Some slides adapted from:
Networked Life (NETS) 112, Univ. of Penn., 2018, Prof. Michael Kearns
Determining the Diameter of Small World Networks, Frank W. Takes \& Walter A. Kosters, Leiden University, The Netherlands
Structure and models of real-world graphs and networks, Jure Leskovec, Carnegie Mellon University
Complex (Biological) Networks, by Elhanan Borenstein, Roded Sharan, and Tomer Shlomi

Computational

 Representation of Networks

List or hash table of edges: \quad Adjacency Matrix (ordered) pairs of nodes
$\{(A, C),(C, B)$,
$(D, B),(D, C)\}$

	A	B	C	D
A	0	0	1	0
B	0	0	0	0
C	0	1	0	0
D	0	1	1	0

Adjacency List

Name:D $n g r:$	Name:C $n g r:$
Name:A $n g r:$	
name:B	
n	

- Which is the most useful representation?
- Should you use them in combination?

Network Structures

- Network structures characterize how networks "look":
- Large or small diameter?
- Number of edges: sparse or dense?
- Degree distributions: heavy/long tail with a power law?
- Clustering coefficient: high or low?
- These are empirical phenomena
- How do you compute them?

Degree Distribution

- x axis: number of neighbors (degree)
- y axis: number of vertices with that degree

(also known as a "heavy tail")

Degree Distribution Algorithm

1. Compute the degree, $\operatorname{deg}(v)$, of each vertex, v.

- If G is represented as an adjacency list, count the number of elements in v 's list.

2. Create a histogram count array, H, of size n, and initialize each $H[i]=0$.
3. For each vertex, v, increment $H[\operatorname{deg}(v)]$.
4. Plot the values of H from 0 to $n-1$ on a regular and log-log scale
5. If the values on the log-log plot form a straight line, determine its slope to find the exponent of the power law degree distribution

Example 1

- Degree distribution without a long/heavy tail.
- Does not exhibit a power law.

Example 2

- Degree distribution with a long/heavy tail.
- Does exhibit a power law, with exponent -2.5.

Distance

- The distance between two vertices is the length of the shortest path connecting them.
- This assumes the network has only a single connected component
- If two vertices are in different components, their distance is infinite

Image from
https://www.sci.unich.it/-francesc/teaching/network/geodesic.html

Diameter

- The diameter of a network is the maximum distance between a pair of vertices in the network
- It measures how near or far typical individuals are from each other

The dolphin network with the diameter (the longest shortest path) highlighted in red. The diameter is 8 edges long.

Definitions

- Consider a connected undirected graph $G=(V, E)$ with $n=|V|$ nodes and $m=|E|$ edges
- Distance $d(v, w)$: length of shortest path between nodes $v, w \in V$
- Diameter $D(G)$: maximal distance (longest shortest path length) over all node pairs: $\max _{v, w \in V} d(v, w)$
- Eccentricity $e(v)$: length of a longest shortest path from v : $e(v)=\max _{w \in V} d(v, w)$
- Diameter $D(G)$ (alternative definition): maximal eccentricity over all nodes: $\max _{v \in V} e(v)$
- Eccentricity distribution: (relative) frequency $f(x)$ of each eccentricity value x

$$
f(x)=\frac{|\{u \in V \mid e(u)=x\}|}{n}
$$

Example

- A graph with diameter 6
- Numbers next to nodes denote eccentricity values

Naïve Algorithm

- Diameter is equal to the largest value returned by an All Pairs Shortest Path (APSP) algorithm
- Brute-force: for each vertex v , execute a Breadth First Search (BFS) from v in $O(m)$ time to find v's eccentricity. Return the largest value found.
- Time complexity $O(n m)$
- Problematic if $\mathrm{n}=8$ million and $\mathrm{m}=1$ billion.
- If one BFS takes 6 seconds on a 3.4 GHz machine, this brute-force algorithm takes 1.5 years to compute the diameter . . .

Heuristic Idea 1

- If we can find one of the nodes in a diameter pair, we can compute the diameter with one more BFS.

1. Perform a BFS from a random sample of nodes, recording nodes with maximum found distance, d .
2. Perform a BFS from all the far nodes (if small) or a random sample of this set (if large).

Heuristic Idea 2

1. Let r be a random vertex and set $D_{\max }=0$.
2. Perform a BFS from r.
3. Select the farthest node, w, in this BFS.

- If the distance from r to w is larger than $D_{\max }$, set $D_{\text {max }}$ to this distance, let $r=w$, and repeat the above two steps.

Plot Results as a Function of n

- If the networks exhibit the small world phenomenon, then diameters are small.
- So plot diameters as a function of n on a lin-log scale:

The $\log n$ function looks like a straight line

Clustering Coefficient

- "friend of a friend is a friend"
- If a connects to b, and b to c, then with high probability a connects to c.
- Clustering coefficient C :
$C=3^{*}$ number of triangles / number of 2-edge paths

Clustering Coefficient (2)

- Clustering coefficient might have a power law:

$$
C(k) \sim k^{-1}
$$

- It is speculated that in real networks:

$$
C=O(1) \text { as } n \rightarrow \infty
$$

Clustering Coefficient Algorithm

- Clustering coefficient C :
$C=3 *$ number of triangles / number of 2-edge paths
- Computing the denominator is easy:
- For each vertex v, let $\operatorname{deg}(v)$ denote its degree.
- The number of paths of length 2 with v in the middle is $\operatorname{deg}(v)$ choose $2=\operatorname{deg}(v)(\operatorname{deg}(v)-1) / 2$.
- So, to get the denominator for C, sum up $\operatorname{deg}(v)(\operatorname{deg}(v)-1) / 2$ for all vertices, v, in G.

Number of 2-edge paths with v in the middle is $4(3) / 2=6$.

Counting Triangles

- To get the numerator for C, we need to count the number of triangles in the graph, G.
- Naïve algorithm:
- For every triple, u, v, w in G, see if they form a triangle. If so, add 1 to a running count.
- Running time is $O\left(n^{4}\right)$ if G is represented with an adjacency list.

This is bad.

Counting Triangles: Slight Improvement

- Put every edge, (v, w), into a hash table, T , so we can do a lookup to see if an edge exists in $O(1)$ expected time, i.e., with a get((v,w)).
- Slightly better naïve algorithm:
- For every triple, u, v, win G, see if they form a triangle. If so, add 1 to a running count.
- Running time is $O\left(n^{3}\right)$ expected if edges in G are stored in a hash table.

Graph Degeneracy

- The degeneracy of a graph is the smallest value of d for which every subgraph has a vertex of degree at most d.
- If a graph has degeneracy d, then there exists an ordering of the vertices of G in which each vertex has at most d neighbors that are earlier in the ordering.

An ordering for a
graph with degeneracy 2 :

Public domain image by David Eppstein

Real-World Graphs

- Real-world graphs tend to have small degeneracy, d.

Data from "Listing All Maximal Cliques in Large Sparse Real-World Graphs," by David Eppstein and Darren Strash

Degeneracy Ordering Algorithm

- Degeneracy can be computed by a simple greedy algorithm:
- Repeatedly find and remove the vertex of smallest degree, adding it to the end of the list.
- The degeneracy is then the highest degree, d , of any vertex at the moment it is removed.
- The ordering is a d-degeneracy ordering.

Linear-time Implementation

1. Initialize an output list, L, to be empty.
2. Compute a number, d_{v}, for each vertex v in G, which is the number of neighbors of v that are not already in L. Initially, d_{v} is just the degrees of v.
3. Initialize an array D such that $D[i]$ contains a list of the vertices v that are not already in L for which $d_{v}=i$.
4. Let N_{v} be a list of the neighbors of v that come before v in L. Initially, N_{v} is empty for every vertex v.
5. Initialize k to 0 .
6. Repeat n times:

- Let i be the smallest index such that $D[i]$ is nonempty.
- Set k to $\max (k, i)$.
- Select a vertex v from $D[i]$. Add v to the beginning of L and remove it from $D[i]$. Mark v as being in L (e.g., using a hash table, H_{L}).
- For each neighbor w of v not already in L (you can check this using H_{L}):
- Subtract one from d_{w}
- Move w to the cell of D corresponding to the new value of d_{w}, i.e., $D\left[d_{w}\right]$
- Add w to N_{v}

Triangle Counting Algorithm

- Compute a d-degeneracy ordering of the vertices, e.g., using the algorithm of the previous slide.
- Process the vertices according to this ordering, L :

For each vertex, v :
For each pair of vertices, u and w, adjacent to v and earlier in the ordering, i.e., u and v are in the list N_{v} from the degeneracy algorithm:

If (u, w) is an edge in the graph, then add one to the triangle count.

- Running time is $\mathrm{O}\left(d^{2} n\right)=\mathrm{O}(d m)$ expected, assuming edges are stored in a hash table.

