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Database of Real-World Graphs
• SNAP: Stanford Network Analysis Project’s Large Network Dataset 

Collection
• http://snap.stanford.edu/data/index.html
• Many real-world networks:

– Social networks : online social networks, edges represent interactions 
between people

– Communication networks : email communication networks with edges 
representing communication

– Citation networks : nodes represent papers, edges represent citations
– Collaboration networks : nodes represent scientists, edges represent 

collaborations (co-authoring a paper)
– Web graphs : nodes represent webpages and edges are hyperlinks
– Amazon networks : nodes represent products and edges link commonly 

co-purchased products
– Internet networks : nodes represent computers and edges 

communication
– … many more



Network Models
• Recent studies of complex systems such as the 

Internet, biological networks, or social networks, 
have significantly increased the interest in 
modeling networks.

• Network models are desired that match real-
world graph structures and properties, including:
– Degree distributions
– Small-world property 
– Clustering coefficients

Image from https://matrix.berkeley.edu/research/social-networks-history

https://matrix.berkeley.edu/research/social-networks-history


Network Models
I. The Erdös-Rényi (Random Graph) Model



Random Graphs (Erdös/Rényi)
§ G(n,p):

§ n nodes 
§ Every pair of nodes is connected 

independently with probability p
§ Average degree: d = (n-1)p ~ np



Erdös-Rényi G(n,p) Generation

• Begin with n isolated vertices, no edges
• Consider (unordered) vertex pairs, {v,w}, according 

to some ordering.
• For each such pair, {v,w}:

– Randomly generate a bit, b, that is 1 with probability p.
– If b = 1, then add the edge (v,w) to the graph

• This algorithm runs in O(n2) time, however.



Faster Erdös-Rényi G(n,p) Generation

• The above algorithm for generating G(n,p) is slow if 
p is small, because most of the bits are 0.

• Probability of having k-1 0’s then a 1 is qk-1p, where 
q = 1-p.

• Waiting times are geometrically distributed.
• Divide the interval [0,1) according to the waiting 

times:



Faster Erdös-Rényi G(n,p) Generation

• Pick r uniformly at random in the interval [0,1)
• Divide the interval [0,1) according to the waiting times.
• The subinterval in which r falls will sample a waiting 

time:



Faster Erdös-Rényi G(n,p) Generation

• The above algorithm for generating G(n,p) is slow if 
p is small, because most of the bits are 0.

• Probability of having k-1 0’s then a 1 is (1-p)k-1p
• Faster O(n+m)-time algorithm skips over runs of 0’s:



There Can’t Be Two Large Components?

missing edgesdensely connected
densely connected



Threshold Phenomena in Erdös-Renyi
• Theorem: In Erdös-Renyi, as n becomes large:

– If p < 1/n, probability of a giant component (e.g. 50% of vertices) goes to 0
– If p > 1/n, probability of a giant component goes to 1, and all other 

components will have size at most log(n)
• Note: at edge density p, expected/average degree is p(N-1) 

~ pn
• So at p ~ 1/n, average degree is ~ 1: incredibly sparse
• So model “explains” giant components in real networks
• General “tipping point” at edge density q (may depend on n):

– If p < q, probability of property goes to 0 as n becomes large
– If p > q, probability of property goes to 1 as n becomes large

• For example, could examine property “diameter 6 or less”



Threshold Phenomena in Erdös-Renyi
• Theorem: In Erdös-Renyi, as N becomes large:

– The diameter is O(log (N) / log (Np).
– Threshold at 

– for diameter 6.
– Note: degrees growing (slightly) with N
– If N = 300M (U.S. population) then average degree pN ~ 500
– If N = 7BN (world population) then average degree pN ~ 1000
– Not unreasonable figures…

• At p not too far from 1/N, get strong connectivity
• Very efficient use of edges



What Doesn’t the Model Explain?
• Erdös-Renyi explains giant component and small diameter
• But:

– degree distribution not heavy-tailed; exponential decay from mean (Poisson)
– clustering coefficient is *exactly* p

• To model these real-world phenomena, we’ll need richer
models with greater realism…



Rich-Get-Richer Processes
• Processes in which the more someone has of something, the 

more likely they are to get more of it
• Examples:

– the more friends you have, the easier it is to make more
– the more business a firm has, the easier it is to win more
– the more people there are at a nightclub, the more who want to go

• Such processes will amplify inequality
• One simple and general model: if you have amount x of 

something, the probability you get more is proportional to x
– so if you have twice as much as me, you’re twice as likely to get more

• Generally leads to heavy-tailed distributions (power laws)



Preferential Attachment

• Start with two vertices connected by an edge
• At each step, add one new vertex v with one edge back to 

previous vertices
• Probability a previously added vertex u receives the new 

edge from v is proportional to the (current) degree of u
– more precisely, probability u gets the edge is

(current degree of u)/(sum of all current degrees)
• Vertices with high degree are likely to get even more links!

– just like Instagram, Twitter, …
• Generates a power law distribution of degrees
• Variation: each new vertex initially gets d edges



Barabasi-Albert (BA) model
• The BA model for preferential attachment

– input: some initial subgraph G0, and d the number of 
edges per new node

– the process: 
• nodes arrive one at the time
• each node connects to d other nodes selecting them with 

probability proportional to their degree
• if [d1,…,dt] is the degree sequence at time t, the node t+1

links to node i with probability equal to

• Guarantees a degeneracy of d. Why?
• Brute-force algorithm runs in O(n2) time. (Bad.)



Faster Barabasi-Albert (BA) Algorithm
• Let d be the parameter for the BA algorithm 

// M is an array of edges chosen so far.

// Each vertex v appears dv times in M.



Barabasi-Albert (BA) algorithm
• Faster algorithm runs in O(nd) = O(n+m) time.
• The BA model should result in power-law degree 

distribution with exponent c = -3

c = -3.  different d’s. P(k) changes. 
c does not


