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Generating Random Permutations

o The input to the random permutation problem
is alist, X = (Xy, X3, . . ., X,), Oof n elements,
which could stand for playing cards or any
other objects we want to randomly permute.

a The output is a reordering of the elements of X,
done in a way so that all permutations of X are
equally likely.

o We can use a function, random(k), which
returns an integer in the range [0, k — 1]
chosen uniformly and independently at random.
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Applications: Simple Algorithms
and Card Games

o A randomized algorithm is an algorithm whose

behavior depends, in part, on the outcomes of random
choices or the values of random bits.

o The main advantage of using randomization in

algorithm design is that the results are often simple and
efficient.

a In addition, there are some problems that need
randomization for them to work effectively.

a For instance, consider the problem common in
computer games involving playing cards—that of
randomly shuffling a deck of cards so that all possible
orderings are equally likely.
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Algorithm 1: Random Sort

a This algorithm simply chooses a random
number for each element in X and sorts
the elements using these values as keys.

Randomized Algorithms 4



Analysis of Random-Sort

Q

To see that every permutation is equally likely to be output by
the random-sort method, note that each element, x;, in X has an
equal probability, 1/n, of having its random r; value be the
smallest.

Thus, each element in X has equal probability of 1/n of being
the first element in the permutation.

Applying this reasoning recursively, implies that the permutation
that is output has the following probability of being chosen:
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That is, each permutation is equally likely to be output.

There is a small probability that this algorithm will fail, however,
if the random values are not unique.
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Fisher-Yates Shuffling

a There is a different algorithm, known as the
Fisher-Yates algorithm, which always succeeds.

Algorithm FisherYates(X):

Input: An array, X, of n elements, indexed from position 0 ton — 1
Output: A permutation of X so that all permutations are equally likely

for k. = n — 1 downto 1 do

Let j + random(k + 1) // j is arandom integer in [0, k]

Swap X [k] and X [5] // This may “swap” X [k| with itself, if j = k
return X
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Analysis of Fisher-Yates

a This algorithm considers the items in the array one at
time from the end and swaps each element with an
element in the array from that point to the beginning.

a Notice that each element has an equal probability, of
1/n, of being chosen as the last element in the array

X (including the element that starts out in that
position).

a Applying this analysis recursively, we see that the
output permutation has probability
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o That is, each permutation is equally likely.
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