
Randomized Algorithms 1

Random Permutations

Michael Goodrich
CS 165



Generating Random Permutations
q The input to the random permutation problem 

is a list, X = (x1, x2, . . . , xn), of n elements, 
which could stand for playing cards or any 
other objects we want to randomly permute. 

q The output is a reordering of the elements of X, 
done in a way so that all permutations of X are 
equally likely.

q We can use a function, random(k), which 
returns an integer in the range [0, k − 1] 
chosen uniformly and independently at random. 

Randomized Algorithms 2



Applications: Simple Algorithms 
and Card Games
q A randomized algorithm is an algorithm whose 

behavior depends, in part, on the outcomes of random 
choices or the values of random bits. 

q The main advantage of using randomization in 
algorithm design is that the results are often simple and 
efficient. 

q In addition, there are some problems that need 
randomization for them to work effectively. 

q For instance, consider the problem common in 
computer games involving playing cards—that of 
randomly shuffling a deck of cards so that all possible 
orderings are equally likely.

Randomized Algorithms 3



Algorithm 1: Random Sort
q This algorithm simply chooses a random 

number for each element in X and sorts 
the elements using these values as keys.

Randomized Algorithms 4



Analysis of Random-Sort
q To see that every permutation is equally likely to be output by 

the random-sort method, note that each element, xi, in X has an 
equal probability, 1/n, of having its random ri value be the 
smallest. 

q Thus, each element in X has equal probability of 1/n of being 
the first element in the permutation.

q Applying this reasoning recursively, implies that the permutation 
that is output has the following probability of being chosen:

q That is, each permutation is equally likely to be output.
q There is a small probability that this algorithm will fail, however, 

if the random values are not unique.

Randomized Algorithms 5



Fisher-Yates Shuffling
q There is a different algorithm, known as the 

Fisher-Yates algorithm, which always succeeds.

Randomized Algorithms 6



Analysis of Fisher-Yates
q This algorithm considers the items in the array one at 

time from the end and swaps each element with an 
element in the array from that point to the beginning.

q Notice that each element has an equal probability, of 
1/n, of being chosen as the last element in the array 
X (including the element that starts out in that 
position).

q Applying this analysis recursively, we see that the 
output permutation has probability

q That is, each permutation is equally likely.
Randomized Algorithms 7


