Random Permutations

Michael Goodrich
CS 165

Trees with snow on branches, “Half Dome, Apple Orchard, Yosemite,” 1933.
Ansel Adams. U.S. government image. U.S. National Archives and Records
Administration.

Randomized Algorithms

Generating Random Permutations

o The input to the random permutation problem
is alist, X = (Xy, X3, . . ., X,), Oof n elements,
which could stand for playing cards or any
other objects we want to randomly permute.

a The output is a reordering of the elements of X,
done in a way so that all permutations of X are
equally likely.

o We can use a function, random(k), which
returns an integer in the range [0, k — 1]
chosen uniformly and independently at random.

Randomized Algorithms 2

Applications: Simple Algorithms
and Card Games

o A randomized algorithm is an algorithm whose

behavior depends, in part, on the outcomes of random
choices or the values of random bits.

o The main advantage of using randomization in

algorithm design is that the results are often simple and
efficient.

a In addition, there are some problems that need
randomization for them to work effectively.

a For instance, consider the problem common in
computer games involving playing cards—that of
randomly shuffling a deck of cards so that all possible
orderings are equally likely.

Randomized Algorithms 3

Algorithm 1: Random Sort

a This algorithm simply chooses a random
number for each element in X and sorts
the elements using these values as keys.

Randomized Algorithms 4

Analysis of Random-Sort

Q

To see that every permutation is equally likely to be output by
the random-sort method, note that each element, x;, in X has an
equal probability, 1/n, of having its random r; value be the
smallest.

Thus, each element in X has equal probability of 1/n of being
the first element in the permutation.

Applying this reasoning recursively, implies that the permutation
that is output has the following probability of being chosen:

1 1 1 1y 1
&))-G)6) -
That is, each permutation is equally likely to be output.

There is a small probability that this algorithm will fail, however,
if the random values are not unique.

Randomized Algorithms 5

Fisher-Yates Shuffling

a There is a different algorithm, known as the
Fisher-Yates algorithm, which always succeeds.

Algorithm FisherYates(X):

Input: An array, X, of n elements, indexed from position 0 ton — 1
Output: A permutation of X so that all permutations are equally likely

for k. = n — 1 downto 1 do

Let j + random(k + 1) // j is arandom integer in [0, k]

Swap X [k] and X [5] // This may “swap” X [k| with itself, if j = k
return X

IOI?I1112||3||4||5||6||7|l8||9|

\
Lo [z loffa]le]lellefla]le]ls]

Randomized Algorithms 6

Analysis of Fisher-Yates

a This algorithm considers the items in the array one at
time from the end and swaps each element with an
element in the array from that point to the beginning.

a Notice that each element has an equal probability, of
1/n, of being chosen as the last element in the array

X (including the element that starts out in that
position).

a Applying this analysis recursively, we see that the
output permutation has probability

G) =) () () -

o That is, each permutation is equally likely.

Randomized Algorithms 7

