Selected Sorting Algorithms

CS 165: Project in Algorithms and Data Structures Michael T. Goodrich

Some slides are from J. Miller, CSE 373, U. Washington

Why Sorting?

- Practical application
 - People by last name
 - Countries by population
 - Search engine results by relevance
- Fundamental to other algorithms
- Different algorithms have different asymptotic and constant-factor trade-offs
 - No single 'best' sort for all scenarios
 - Knowing one way to sort just isn't enough
- Many to approaches to sorting which can be used for other problems

Problem statement

There are *n* comparable elements in an array and we want to rearrange them to be in increasing order

Pre:

- An array ${\bf A}$ of data records
- A value in each data record
- A comparison function
 - <, =, >, compareTo

Post:

- For each distinct position i and j of A, if i < j then A[i] ≤ A[j]
- A has all the same data it started with

Insertion sort

- insertion sort: orders a list of values by repetitively inserting a particular value into a sorted subset of the list
- more specifically:
 - \checkmark consider the first item to be a sorted sublist of length 1
 - insert the second item into the sorted sublist, shifting the first item if needed
 - insert the third item into the sorted sublist, shifting the other items as needed
 - repeat until all values have been inserted into their proper positions

Insertion sort

• Simple sorting algorithm.

- n-1 passes over the array

 At the end of pass *i*, the elements that occupied A[0]...A[*i*] originally are still in those spots and in sorted order.

	2	15	8	1	17	10	12	5
	0	1	2	3	4	5	6	7
after pass 2	2	8	15	1	17	10	12	5
	0	× 1	2	3	4	5	6	7
after		2	8	15	17	10	12	5
pass 3	0	1	2	3	4	5	6	7

5

Insertion sort example

Insertion sort code

Insertion-sort Analysis

- An inversion in a permutation is the number of pairs that are out of order, that is, the number of pairs, (i,j), such that i<j but x_i>x_j.
- Each step of insertion-sort fixes an inversion or stops the while-loop.
- Thus, the running time of insertion-sort is O(n + k), where k is the number of inversions.

Insertion-sort Analysis

• The worst case for the number of inversions, k, is

• This occurs for a list in reverse-sorted order.

Insertion-sort Analysis

x = 500 allest element H(m)• The average case for k is romove it -> A(n-1) rerushing X: $E(I):0:\frac{1}{n} + (\frac{1}{n} + 2:\frac{1}{n} + \cdots + (n-1)\frac{1}{n})$ = $\frac{1}{n} \sum_{i=1}^{n-1} i = \frac{1}{n} \left(\frac{n \cdot (n-1)}{2}\right)$

 $A(n) = A(n-1) + \frac{n-1}{2}$ N(0 - $= O(n_{q}^{z})$

Shell sort description

- shell sort: orders a list of values by comparing elements that are separated by a gap of >1 indexes
 - a generalization of insertion sort
 - invented by computer scientist Donald Shell in 1959
- based on some observations about insertion sort:
 - insertion sort runs fast if the input is almost sorted
- insertion sort's weakness is that it swaps each element just one step at a time, taking many swaps to get the element into its correct position

Shell sort example

 Idea: Sort all elements that are 5 indexes apart, then sort all elements that are 3 indexes apart, ...

Original	32	95	16	82	24	66	35	19	75	54	40	43	93	68	
After 5-sort	32	35	16	68	24	40	43	19	75	54	66	95	93	82	6 swaps
After 3-sort	32	19	16	43	24	40	54	35	75	68	66	95	93	82	5 swaps
After 1-sort	16	19	24	32	35	40	43	54	66	68	72	82	93	95	15 swaps

Shell sort code or gin public static void shellSort(int[] a) { for (int gap = a.length / 2; gap > 0; gap /= 2) { for (int i = gap; i < a.length; i++) {</pre> // slide element i back by gap indexes // until it's "in order" int temp = a[i]; int j = i;while $(j \ge gap \&\& temp < a[j - gap])$ { a[j] = a[j - gap];j −= gap; a[j] = temp;

Shell sort Analysis

- Harder than insertion sort
- But certainly no worse than insertion sort
- Worst-case: O(n²)
- Average-case: ???? .xpetimet

Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
 - Divide: divide the input data
 S in two disjoint subsets S₁
 and S₂
 - Recur: solve the subproblems associated with S_1 and S_2
 - Conquer: combine the solutions for S₁ and S₂ into a solution for S
- The base case for the recursion are subproblems of size 0 or 1

Merge-Sort

- Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm
 - It has **O**(**n** log **n**) running time

The Merge-Sort Algorithm

- Merge-sort on an input sequence *S* with *n* elements consists of three steps:
 - Divide: partition *S* into two sequences *S*₁ and *S*₂ of about *n*/2 elements each
 - Recur: recursively sort S_1 and S_2
 - Conquer: merge S₁ and S₂ into a unique sorted sequence

Algorithm mergeSort(S): Input array S of n elements Output array S sorted if n > 1 then $(S_1, S_2) \leftarrow \text{partition}(S, n/2)$ mergeSort(S_1) mergeSort(S_2)

 $S \leftarrow \operatorname{merge}(S_1, S_2)$

Merging Two Sorted Sequences

- The conquer step of merge-sort consists of merging two sorted sequences *A* and *B* into a sorted sequence *S* containing the union of the elements of *A* and *B*
- Merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes O(n) time

```
Algorithm merge(S_1, S_2, S):
```

Input: Two arrays, S_1 and S_2 , of size n_1 and n_2 , respectively, sorted in nondecreasing order, and an empty array, S, of size at least $n_1 + n_2$ *Output:* S, containing the elements from S_1 and S_2 in sorted order

```
\begin{array}{l} i \leftarrow 1 \\ j \leftarrow 1 \\ \textbf{while} \ i \leq n \ \textbf{and} \ j \leq n \ \textbf{do} \\ \textbf{if} \ S_1[i] \leq S_2[j] \ \textbf{then} \\ S[i+j-1] \leftarrow S_1[i] \\ i \leftarrow i+1 \\ \textbf{else} \\ S[i+j-1] \leftarrow S_2[j] \\ j \leftarrow j+1 \\ \textbf{while} \ i \leq n \ \textbf{do} \\ S[i+j-1] \leftarrow S_1[i] \\ i \leftarrow i+1 \\ \textbf{while} \ j \leq n \ \textbf{do} \\ S[i+j-1] \leftarrow S_2[j] \\ j \leftarrow j+1 \\ \end{array}
```

Merge-Sort Tree

- An execution of merge-sort is depicted by a binary tree
 - each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
 - the root is the initial call
 - the leaves are calls on subsequences of size 0 or 1

Analysis of Merge-Sort

- The height h of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide in half the sequence,
- The overall amount or work done at the nodes of depth i is O(n)
 - we partition and merge 2^i sequences of size $n/2^i$
 - we make 2^{i+1} recursive calls
- Thus, the best/worst/average running time of merge-sort is $O(n \log n)$

A Hybrid Sorting Algorithm

- A **hybrid** sorting algorithm is a blending of two different sorting algorithms, typically, a divide-and-conquer algorithm, like merge-sort, combined with an incremental algorithm, like insertion-sort.
- The algorithm is parameterized with hybridization value, *H*, and an example with merge-sort and insertion-sort would work as follow:
 - Start out performing merge-sort, but switch to insertion sort when the problem size goes below H.

A Hybrid Sorting Algorithm

- Pseudo-code:
- Running time:
 - Depends on *H*
 - Interesting experiments:

1.
$$H = n^{1/2}$$

2. $H = n^{1/3}$

3.
$$H = n^{1/4}$$

Algorithm HybridMergeSort(*S*, *H*): Input array *S* of *n* elements Output array *S* sorted

if $n \rightarrow H$ then $(S_1, S_2) \leftarrow partition(S, n/2)$ HybridMergeSort(S_1, H) HybridMergeSort(S_2, H) $S \leftarrow merge(S_1, S_2)$ else InsertionSort(S)

Hybrid Merge-sort Analysis

• Hint: combine the tree-based merge-sort analysis and the insertion-sort analysis...