Selected Sorting Algorithms

CS 165: Project in Algorithms
and Data Structures
Michael T. Goodrich

UNIVERSITY of CALIFORNIA £) IRVINE

. :

Some slides are from J. Miller, CSE 373, U. Washington

Why Sorting?
Practical application
— People by last name
— Countries by population
— Search engine results by relevance

Fundamental to other algorithms

Different algorithms have different asymptotic and
constant-factor trade-offs

— No single ‘best’ sort for all scenarios
— Knowing one way to sort just isn't enough

Many to approaches to sorting which can be used for
other problems

Problem statement

There are n comparable elements in an array
and we want to rearrange them to be in
increasing order

Pre:
— An array A of data records
— A value Iin each data record

— A comparison function
e <, =, > compareTo

Post:

— For each distinct position i and j ofA,ifi <
thenA[i] < A[J]

— A has all the same data it started with

Insertion sort

* insertion sort: orders a list of values by
repetitively inserting a particular value into a
sorted subset of the list

* more specifically:
++~ consider the first item to be a sorted sublist of length 1
v~ insert the second item into the sorted sublist, shifting
the first item if needed

<« — insert the third item into the sorted sublist, shifting the
other items as needed

v/— repeat until all values have been inserted into their
proper positions

Insertion sort
» Simple sorting algorithm.
~—n-1 passes over the array

— At the end of pass /, the elements that
occupied A[O]...A[/] originally are still in those
spots and in sorted order.

2 | 15 I @ 1 (17|10 | 12| 5
0 1 2 3 4 5 6 7
after 2 | 8 | 15 I@ 17 | 10 | 12 | 5
pass 2 o 1T 2 3 4 5 6 7
after (1) 2 | 8 | 15 I 17 | 10 | 12 | 5
pass 3 0o 1 2 3 4 5 6 7

Insertion sort example

3 is sorted.
Shift nothing. Insert 9.

3 and 9 are sorted.
Shift 9 to the right. Insert 6.

3, 6, and 9 are sorted.

Shift 9, 6, and 3 to the right. Insert 1.

1, 3, 6, and 9 are sorted.

Shift 9, 6, and 3 to the right. Insert 2.

3 9 6 1 2

3 9 —P» 6 1 2
4 |

3—» 6 —» 9 —» 1 2

4 |

1 3—» 6 —» 9 —>» 2
*

Insertion sort code

public static voild insertionSort (int][]

a) A
i < a.length; 1i++) {

for (int 1 = 1;
~ int temp = al[i]; ‘Tf;

// slide elements down to make room for a[i]

int §J = 1i;

K:§~, while (3 > 0 && a3 - 1] > temp) {
aljl = alj - 11;

J J—=; /l\

Insertion-sort Analysis

* An inversion in a permutation is the
number of pairs that are out of order, that
IS, the number of pairs, (i,j), such that i<
but Xx;>x;. - o

» Each step of insertion-sort fixes an
Inversion or stops the while-loop.

* Thus, the running time of insertion-sort is
O(n + k), where k is the number of
inversions.

Insertion-sort Analysis

e The worst case for the number of
Inversions, K, IS

I A S N
~

— , L — ﬂ(‘ﬂ’&)i O[PZ>
(= A

 This occurs for a list in reverse-sorted
order.

Insertion-sort Analysis

* The average case for Kk is @ (\RD
% N(QU’{/ o\ o

[VDL ({

Shell sort description

shell sort: orders a list of values by comparing
elements that are separated by a gap of >1
iIndexes

— a generalization of insertion sort

— invented by computer scientist Donald Shell in 19gg

based on some observations about insertion sort:
/ — insertion sort runs fast if the input is almost sorted

.~ — Insertion sort's weakness is that it swaps each
element just one step at a time, taking many swaps to
get the element into its correct position

Shell sort example

* |dea: Sort all elements that are 5 indexes
apart, then sort all elements that are 3
Indexes apart, ...

Original 32 95 16 82 24 66 35 19 75 54 40 43 93 68
m
_ 7 N7 | N N
After 5-sort 32 35 16 68 24 40 43 19 75 54 66 95 93 82 | 6 swaps
After 3-sort 32 19 16 43 24 40 54 35 75 68 66 95 93 82 5 swaps
-
After 1-sort 16 19 24 32 35 40 43 54 66 68 72 82 93 95 [15swaps

-

13

Shell sort code o el

public static void shellSort(int[] a) { Gf
for (int gap = a.length / 2; gap > 0; gap /= 2) {
for (int 1 = gap; 1 < a.length; i++) {
// slide element i back by gap indexes
// until it's "in order"

int temp = ali];
int j i;
, while

j >= gap && temp < al[j - gapl)
)]] — gapl;

Q|
Q
. HORY
\S

14

Shell sort Analysis

Harder than insertion sort
But certainly no worse than insertion sort

Worst-case: O(n2) <—
Average-case: 7?77?77 ,\ﬁ%
— =1 |

QK &746'@}\

Divide-and-Conquer

« Divide-and conquer is a

general algorithm design 1. Divide in half .
paradigm: [o p]
- . . . Split (st equally
— Divide: divide the input data ! I

2. Recur.

S in two disjoint subsets S, 2. Recur.

and §

olve the
subproblems associated
with §, and S,

— Conquer: combine the
solutions for S, and §, into a | :)

solution for S . ,
« The base case for the S— (e 7
recursion are subproblems of 3. Merge.
sizeOorl

Merge Sort 16

Merge-Sort

Merge-sort is a sorting algorithm based on the divide-and-conquer
paradigm
— It has O(n log n) running time

%(85 24 63 45 17 31 96 50] (17 24 31 45 50 63 85 96]

(85 24 63 45)“(l? 31 96 50 (24 45 63 85] (17 31 50 96]

<) N
mwmw mmmm

Merge Sort 17

The Merge-Sort Algorithm

« Merge-sort on an input | Algorithm mergeSort(S):
sequence § with » Input array S of n
elements consists of clements
three steps: Output array § sorted

— Divide: partition S into
two sequences S, and S, if n> 1 then
of about n/2 elements (S,, S,) < partition(S, n/2)
each mergeSort(S))
— Recur: recursively sort S, mergeSort(S,)
and S, S < merge(S,, S,)
— Conquer: merge S, and
S, into a unique sorted 7\
sequence

Merge Sort 18

Merging Two Sorted Sequences

The conquer step of

merge-sort consists Algorithm merge(Sy. S, 5):

of merging two
sorted sequences 4
and B into a sorted
sequence §
containing the union
of the elements of 4
and B

Merging two sorted
sequences, each
with n/2 elements
and implemented by
means of a doubly
linked list, takes
O(n) time

Input: Two arrays, Sp and So, of size ny and no, respectively, sorted in non-

decreasing order, and an empty array, .S, of size at least n1 + no
Output: S, containing the elements from S and S5 in sorted order
11
g1
while : <nand j <ndo
if Sl [Z] < SQ []] then
Sli+ 5 — 1] « Sq]]
11+ 1
else
Sli+ 7 — 1] + Salj]
j+—7+1
while : < n do
Sli+ 7 — 1] < Sq[i]
11+ 1
while j <n do
S[i+j — 1] + Saj]
j+7+1

Merge Sort 19

Merge-Sort Tree

« An execution of merge-sort is depicted by a binary tree

— each node represents a recursive call of merge-sort and stores
« unsorted sequence before the execution and its partition
 sorted sequence at the end of the execution

— the root is the initial call
— the leaves are calls on subsequences of size 0 or 1

[72|94—>2479 1

[7|2—>27 1 [9|4—>49 1

Merge Sort 20

Analysis of Merge-Sort

« The height & of the merge-sort tree is O(log n) L///
— at each recursive call we divide in half the sequence,

« The overall amount or work done at the nodes of depth i is O(n)
— we partition and merge 2/ sequences of size n/2!
— we make 2#! recursive calls

« Thus, the best/worst/average running time of merge-sort is O(n log n)

——

. S
depth #segs size
0 1 n |] Bg\\(\:\ﬂ'{\/ N
] \ 23 I
]

M
a

o o o Y o o e [O

Merge Sort 21

A Hybrid Sorting Algorithm

* A hybrid sorting algorithm is a blending of two
different sorting algorithms, typically, a divide-and-
conquer algorithm, like merge-sort, combined with
an incremental algorithm, like insertion-sort.

* The algorthm is parameterized with hybridization
value@nd an example with merge-sort and
insertion-sort would work as follow:

— Start out performing merge-sort, but switch to insertion
sort when the problem size goes below H.

A Hybrid Sorting Algorithm

e Pseudo-code: Algorithm HybridMergeSort(S, H):
Input array S of n
elements
. Running time: Output array § sorted
— Dependls on H | i n @en
— Interesting experiments: (S, S,) « partition(S, n/2)
= nl/2
;' Z B "43 HybridMergeSort(S,, H)
. =n .
3 H= HybridMergeSort(S,, H)
S < merge(S,, S,)
else
InsertionSort(sS)

/‘\

Hybrid Merge-sort Analysis

* Hint: combine the tree-based merge-sort
analysis and the insertion-sort analysis...

/

\

e —

	Selected Sorting Algorithms
	Why Sorting?
	Problem statement
	Insertion sort
	Insertion sort
	Insertion sort example
	Insertion sort code
	Insertion-sort Analysis
	Insertion-sort Analysis	
	Insertion-sort Analysis	
	Slide Number 11
	Shell sort description
	Shell sort example
	Shell sort code
	Shell sort Analysis
	Divide-and-Conquer
	Merge-Sort
	The Merge-Sort Algorithm
	Merging Two Sorted Sequences
	Merge-Sort Tree
	Analysis of Merge-Sort
	A Hybrid Sorting Algorithm
	A Hybrid Sorting Algorithm
	Hybrid Merge-sort Analysis

