Selected Sorting Algorithms

CS 165: Project in Algorithms and Data Structures
Michael T. Goodrich

Some slides are from J. Miller, CSE 373, U. Washington
Why Sorting?

• Practical application
 – People by last name
 – Countries by population
 – Search engine results by relevance

• Fundamental to other algorithms

• Different algorithms have different asymptotic and constant-factor trade-offs
 – No single ‘best’ sort for all scenarios
 – Knowing one way to sort just isn’t enough

• Many to approaches to sorting which can be used for other problems
Problem statement

There are n comparable elements in an array and we want to rearrange them to be in increasing order

Pre:
– An array A of data records
– A value in each data record
– A comparison function
 • $<, =, >$, compareTo

Post:
– For each distinct position i and j of A, if $i < j$ then $A[i] \leq A[j]$
– A has all the same data it started with
Insertion sort

- **insertion sort**: orders a list of values by repetitively inserting a particular value into a sorted subset of the list

- more specifically:
 - ✓ consider the first item to be a sorted sublist of length 1
 - ✓ insert the second item into the sorted sublist, shifting the first item if needed
 - ✓ insert the third item into the sorted sublist, shifting the other items as needed
 - ✓ repeat until all values have been inserted into their proper positions
Insertion sort

- Simple sorting algorithm.
 - $n-1$ passes over the array
 - At the end of pass i, the elements that occupied $A[0]...A[i]$ originally are still in those spots and in sorted order.

<table>
<thead>
<tr>
<th></th>
<th>2</th>
<th>15</th>
<th>8</th>
<th>1</th>
<th>17</th>
<th>10</th>
<th>12</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>after</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pass 2</td>
<td>2</td>
<td>8</td>
<td>15</td>
<td>1</td>
<td>17</td>
<td>10</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>8</th>
<th>15</th>
<th>17</th>
<th>10</th>
<th>12</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>after</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pass 3</td>
<td>1</td>
<td>2</td>
<td>8</td>
<td>15</td>
<td>17</td>
<td>10</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
Insertion sort example

3 is sorted.

3 and 9 are sorted.
Shift 9 to the right. Insert 6.

3, 6, and 9 are sorted.
Shift 9, 6, and 3 to the right. Insert 1.

1, 3, 6, and 9 are sorted.
Shift 9, 6, and 3 to the right. Insert 2.
public static void insertionSort(int[] a) {
 for (int i = 1; i < a.length; i++) {
 int temp = a[i];
 int j = i;
 while (j > 0 && a[j - 1] > temp) {
 a[j] = a[j - 1];
 j--;
 }
 a[j] = temp;
 }
}
Insertion-sort Analysis

• An **inversion** in a permutation is the number of pairs that are out of order, that is, the number of pairs, \((i,j)\), such that \(i < j\) but \(x_i > x_j\).

• Each step of insertion-sort fixes an inversion or stops the while-loop.

• Thus, the running time of insertion-sort is \(O(n + k)\), where \(k\) is the number of inversions.
Insertion-sort Analysis

• The worst case for the number of inversions, \(k \), is

\[
\sum_{i=1}^{n-1} i = \frac{n(n-1)}{2} = \Theta(n^2)
\]

• This occurs for a list in reverse-sorted order.
Insertion-sort Analysis

- The average case for k is

\[x = \text{smallest element} \]

\[\underbrace{A(\frac{n}{2})}_{\text{remove it}} \rightarrow A(n-1) \]

\[E(\Sigma) = 0 \cdot \frac{1}{n} + 1 \cdot \frac{1}{n} + 2 \cdot \frac{1}{n} + \cdots + (n-1) \frac{1}{n} \]

\[= \frac{1}{n} \sum_{k=1}^{n-1} k = \frac{1}{n} \left(\frac{n(n-1)}{2} \right) \]
\[A(n) = A(n-1) + \frac{n-1}{2} \]

\[= \sum_{i=1}^{\frac{n}{2}} i \]

\[= \frac{n(n-1)}{4} \]

\[= O(n^2) \]
Shell sort description

• **shell sort**: orders a list of values by comparing elements that are separated by a gap of >1 indexes
 – a generalization of insertion sort
 – invented by computer scientist Donald Shell in 1959

• based on some observations about insertion sort:
 ✓ – insertion sort runs fast if the input is almost sorted
 ✓ – insertion sort's weakness is that it swaps each element just one step at a time, taking many swaps to get the element into its correct position
Shell sort example

• Idea: Sort all elements that are 5 indexes apart, then sort all elements that are 3 indexes apart, ...
public static void shellSort(int[] a) {
 for (int gap = a.length / 2; gap > 0; gap /= 2) {
 for (int i = gap; i < a.length; i++) {
 // slide element i back by gap indexes
 // until it's "in order"
 int temp = a[i];
 int j = i;
 while (j >= gap && temp < a[j - gap]) {
 a[j] = a[j - gap];
 j -= gap;
 }
 a[j] = temp;
 }
 }
}
Shell sort Analysis

• Harder than insertion sort
• But certainly no worse than insertion sort
• Worst-case: $O(n^2)$
• Average-case: ????

Experiments
Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
 - Divide: divide the input data S in two disjoint subsets S_1 and S_2
 - Recur: solve the subproblems associated with S_1 and S_2
 - Conquer: combine the solutions for S_1 and S_2 into a solution for S

- The base case for the recursion are subproblems of size 0 or 1
Merge-Sort

- Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm
 - It has $O(n \log n)$ running time
The Merge-Sort Algorithm

- Merge-sort on an input sequence S with n elements consists of three steps:
 - Divide: partition S into two sequences S_1 and S_2 of about $n/2$ elements each
 - Recur: recursively sort S_1 and S_2
 - Conquer: merge S_1 and S_2 into a unique sorted sequence

Algorithm mergeSort(S):

- **Input** array S of n elements
- **Output** array S sorted

if $n > 1$ then

 $(S_1, S_2) \leftarrow \text{partition}(S, n/2)$

 mergeSort(S_1)

 mergeSort(S_2)

 $S \leftarrow \text{merge}(S_1, S_2)$
Merging Two Sorted Sequences

• The conquer step of merge-sort consists of merging two sorted sequences A and B into a sorted sequence S containing the union of the elements of A and B.

• Merging two sorted sequences, each with $n/2$ elements and implemented by means of a doubly linked list, takes $O(n)$ time.

Algorithm merge(S_1, S_2, S):

Input: Two arrays, S_1 and S_2, of size n_1 and n_2, respectively, sorted in non-decreasing order, and an empty array, S, of size at least $n_1 + n_2$

Output: S, containing the elements from S_1 and S_2 in sorted order

1. $i \leftarrow 1$
2. $j \leftarrow 1$
3. While $i \leq n$ and $j \leq n$ do
 4. If $S_1[i] \leq S_2[j]$ then
 5. $S[i + j - 1] \leftarrow S_1[i]$
 6. $i \leftarrow i + 1$
 7. Else
 8. $S[i + j - 1] \leftarrow S_2[j]$
 9. $j \leftarrow j + 1$
10. While $i \leq n$ do
 11. $S[i + j - 1] \leftarrow S_1[i]$
 12. $i \leftarrow i + 1$
13. While $j \leq n$ do
 14. $S[i + j - 1] \leftarrow S_2[j]$
 15. $j \leftarrow j + 1$
Merge-Sort Tree

- An execution of merge-sort is depicted by a binary tree
 - each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
 - the root is the initial call
 - the leaves are calls on subsequences of size 0 or 1
Analysis of Merge-Sort

• The height \(h \) of the merge-sort tree is \(O(\log n) \)
 - at each recursive call we divide in half the sequence,
• The overall amount or work done at the nodes of depth \(i \) is \(O(n) \)
 - we partition and merge \(2^i \) sequences of size \(n/2^i \)
 - we make \(2^{i+1} \) recursive calls
• Thus, the best/worst/average running time of merge-sort is \(O(n \log n) \)
A Hybrid Sorting Algorithm

- A **hybrid** sorting algorithm is a blending of two different sorting algorithms, typically, a divide-and-conquer algorithm, like merge-sort, combined with an incremental algorithm, like insertion-sort.
- The algorithm is parameterized with hybridization value, H, and an example with merge-sort and insertion-sort would work as follow:
 - Start out performing merge-sort, but switch to insertion sort when the problem size goes below H.
A Hybrid Sorting Algorithm

• Pseudo-code:

• Running time:
 – Depends on H
 – Interesting experiments:
 1. $H = n^{1/2}$
 2. $H = n^{1/3}$
 3. $H = n^{1/4}$

Algorithm HybridMergeSort(S, H):

Input array S of n elements
Output array S sorted

if $n \geq H$ then
 $(S_1, S_2) \leftarrow \text{partition}(S, n/2)$
 HybridMergeSort(S_1, H)
 HybridMergeSort(S_2, H)
 $S \leftarrow \text{merge}(S_1, S_2)$
else
 InsertionSort(S)
Hybrid Merge-sort Analysis

• Hint: combine the tree-based merge-sort analysis and the insertion-sort analysis...