
Selected Sorting Algorithms

CS 165: Project in Algorithms
and Data Structures
Michael T. Goodrich

Some slides are from J. Miller, CSE 373, U. Washington

Why Sorting?
• Practical application

– People by last name
– Countries by population
– Search engine results by relevance

• Fundamental to other algorithms

• Different algorithms have different asymptotic and
constant-factor trade-offs
– No single ‘best’ sort for all scenarios
– Knowing one way to sort just isn’t enough

• Many to approaches to sorting which can be used for
other problems

2

Problem statement
There are n comparable elements in an array

and we want to rearrange them to be in
increasing order

Pre:
– An array A of data records
– A value in each data record
– A comparison function

• <, =, >, compareTo

Post:
– For each distinct position i and j of A, if i < j

then A[i] ≤ A[j]
– A has all the same data it started with

3

Insertion sort
• insertion sort: orders a list of values by

repetitively inserting a particular value into a
sorted subset of the list

• more specifically:
– consider the first item to be a sorted sublist of length 1
– insert the second item into the sorted sublist, shifting

the first item if needed
– insert the third item into the sorted sublist, shifting the

other items as needed
– repeat until all values have been inserted into their

proper positions

4

Insertion sort
• Simple sorting algorithm.

– n-1 passes over the array
– At the end of pass i, the elements that

occupied A[0]…A[i] originally are still in those
spots and in sorted order.

5

2 8 15 1 17 10 12 5

0 1 2 3 4 5 6 7

1 2 8 15 17 10 12 5

0 1 2 3 4 5 6 7

after
pass 2

after
pass 3

2 15 8 1 17 10 12 5

0 1 2 3 4 5 6 7

Insertion sort example

6

Insertion sort code
public static void insertionSort(int[] a) {

for (int i = 1; i < a.length; i++) {
int temp = a[i];

// slide elements down to make room for a[i]
int j = i;
while (j > 0 && a[j - 1] > temp) {

a[j] = a[j - 1];
j--;

}

a[j] = temp;
}

}

7

Insertion-sort Analysis
• An inversion in a permutation is the

number of pairs that are out of order, that
is, the number of pairs, (i,j), such that i<j
but xi>xj.

• Each step of insertion-sort fixes an
inversion or stops the while-loop.

• Thus, the running time of insertion-sort is
O(n + k), where k is the number of
inversions.

Insertion-sort Analysis

• The worst case for the number of
inversions, k, is

• This occurs for a list in reverse-sorted
order.

Insertion-sort Analysis

• The average case for k is

Shell sort description
• shell sort: orders a list of values by comparing

elements that are separated by a gap of >1
indexes
– a generalization of insertion sort
– invented by computer scientist Donald Shell in 1959

• based on some observations about insertion sort:
– insertion sort runs fast if the input is almost sorted
– insertion sort's weakness is that it swaps each

element just one step at a time, taking many swaps to
get the element into its correct position

12

Shell sort example

• Idea: Sort all elements that are 5 indexes
apart, then sort all elements that are 3
indexes apart, ...

13

Shell sort code
public static void shellSort(int[] a) {

for (int gap = a.length / 2; gap > 0; gap /= 2) {
for (int i = gap; i < a.length; i++) {

// slide element i back by gap indexes
// until it's "in order"
int temp = a[i];
int j = i;
while (j >= gap && temp < a[j - gap]) {

a[j] = a[j – gap];
j -= gap;

}
a[j] = temp;

}
}

}

14

Shell sort Analysis

• Harder than insertion sort
• But certainly no worse than insertion sort
• Worst-case: O(n2)
• Average-case: ????

Divide-and-Conquer
• Divide-and conquer is a

general algorithm design
paradigm:
– Divide: divide the input data

S in two disjoint subsets S1
and S2

– Recur: solve the
subproblems associated
with S1 and S2

– Conquer: combine the
solutions for S1 and S2 into a
solution for S

• The base case for the
recursion are subproblems of
size 0 or 1

Merge Sort 16

Merge-Sort
• Merge-sort is a sorting algorithm based on the divide-and-conquer

paradigm
– It has O(n log n) running time

Merge Sort 17

The Merge-Sort Algorithm
• Merge-sort on an input

sequence S with n
elements consists of
three steps:
– Divide: partition S into

two sequences S1 and S2
of about n/2 elements
each

– Recur: recursively sort S1
and S2

– Conquer: merge S1 and
S2 into a unique sorted
sequence

Merge Sort 18

Algorithm mergeSort(S):
Input array S of n
elements
Output array S sorted

if n > 1 then
(S1, S2) ← partition(S, n/2)
mergeSort(S1)
mergeSort(S2)
S ← merge(S1, S2)

Merging Two Sorted Sequences
• The conquer step of

merge-sort consists
of merging two
sorted sequences A
and B into a sorted
sequence S
containing the union
of the elements of A
and B

• Merging two sorted
sequences, each
with n/2 elements
and implemented by
means of a doubly
linked list, takes
O(n) time

Merge Sort 19

Merge-Sort Tree
• An execution of merge-sort is depicted by a binary tree

– each node represents a recursive call of merge-sort and stores
• unsorted sequence before the execution and its partition
• sorted sequence at the end of the execution

– the root is the initial call
– the leaves are calls on subsequences of size 0 or 1

Merge Sort 20

7 2 9 4 → 2 4 7 9

7 2 → 2 7 9 4 → 4 9

7 → 7 2 → 2 9 → 9 4 → 4

Analysis of Merge-Sort
• The height h of the merge-sort tree is O(log n)

– at each recursive call we divide in half the sequence,
• The overall amount or work done at the nodes of depth i is O(n)

– we partition and merge 2i sequences of size n/2i

– we make 2i+1 recursive calls
• Thus, the best/worst/average running time of merge-sort is O(n log n)

Merge Sort 21

depth #seqs size
0 1 n

1 2 n/2

i 2i n/2i

… … …

A Hybrid Sorting Algorithm
• A hybrid sorting algorithm is a blending of two

different sorting algorithms, typically, a divide-and-
conquer algorithm, like merge-sort, combined with
an incremental algorithm, like insertion-sort.

• The algorithm is parameterized with hybridization
value, H, and an example with merge-sort and
insertion-sort would work as follow:
– Start out performing merge-sort, but switch to insertion

sort when the problem size goes below H.

A Hybrid Sorting Algorithm
• Pseudo-code:

• Running time:
– Depends on H
– Interesting experiments:

1. H = n1/2

2. H = n1/3

3. H = n1/4

Algorithm HybridMergeSort(S, H):
Input array S of n
elements
Output array S sorted

if n > H then
(S1, S2) ← partition(S, n/2)
HybridMergeSort(S1, H)
HybridMergeSort(S2, H)
S ← merge(S1, S2)

else
InsertionSort(S)

Hybrid Merge-sort Analysis

• Hint: combine the tree-based merge-sort
analysis and the insertion-sort analysis…

	Selected Sorting Algorithms
	Why Sorting?
	Problem statement
	Insertion sort
	Insertion sort
	Insertion sort example
	Insertion sort code
	Insertion-sort Analysis
	Insertion-sort Analysis	
	Insertion-sort Analysis	
	Slide Number 11
	Shell sort description
	Shell sort example
	Shell sort code
	Shell sort Analysis
	Divide-and-Conquer
	Merge-Sort
	The Merge-Sort Algorithm
	Merging Two Sorted Sequences
	Merge-Sort Tree
	Analysis of Merge-Sort
	A Hybrid Sorting Algorithm
	A Hybrid Sorting Algorithm
	Hybrid Merge-sort Analysis

