Principles for Experimental Algorithmics

Michael T. Goodrich

UNIVERSITY of CALIFORNIA {

) IRVINE

based, in part, on the following papers:
Towards a Discipline of Experimental Algorithmics, by Bernard M.E. Moret

A Theoretician’s Guide to the Experimental Analysis of Algorithms, by David S. Johnson

Experimental Algorithmics

* Experimental Algorithmics studies algorithms and data
structures by joining experimental studies with the traditional
theoretical analyses.

— Scientists do experiments because they have no choice

— In experimental algorithmics we combine theoretical analysis with
experimentation.

Sorting Uniform Permutations (Average of 5 samples per N)

® bubble sort ~ 2.03544 log N + -23.81679
219“ @ insertion sort ~ 1.98573 log N + -24.11747
53 : ® spin the bottle sort ~ 2.15707 log N + -19.55403
o7 ® shellsort1 ~ 1.46079 log N + -22.24401
26 ® shellsort 2 ~ 1.20550 log N + -20.69351
25
24 4
23 4
22 4
21

log T(N) (seconds)

TR RN RN NN NN
1 | I | I | I 1 I
[E - I R B S PR N

NN NN
L
(S N =]

Experimental Algorithmics

* Experimentation with algorithms and data
structures can prove to be indispensable for the
following tasks:

— The assessment of heuristics for hard problems

— The characterization of asymptotic behavior of
complex algorithms

— The comparison of competing designs for tractable
problems

— The formulation of new combinatorial conjectures
— The evaluation of optimization criteria

— The transfer of research results from paper to
production code

Perform Worthwhile Experiments

* Ask questions worth asking
— New problems
— New algorithms
— New types of input distributions
— New types of computer hardware

Measuring Actual Performance

e Random instances should be motivated from real-world data
* Also use real-world data when possible

DIMACS i#i4 =ye

’ r, + v Click here for event search
Center for Discrete Mathematics and Theoretical Computer Science J
Founded as a National Science Foundation Science and Technology Center i '* * Enter search string Q

e http://dimacs.rutgers.edu/programs/challenge/

STANFORD
UNIVERSITY

- "SNAP, -

Stanford Network Analysis Project

e http://snap.stanford.edu/

http://dimacs.rutgers.edu/programs/challenge/
http://snap.stanford.edu/

Testing the Quality of Solutions

* Find a parameter that can be effectively tested
experimentally

— Waste in bin packing
— Closeness to a known lower bound

(<] =

INPUT OUTPUT

Experimental Setup

Have clear objectives
Gather data to answer the questions posed
Choose hardware appropriately

Code solutions consistently to allow for good
conclusions

Generate useful problem instances

Analyze your data

Understand Your Hardware:
The Memory Hierarchy

* The trade-off of size and speed

1TB /\ Disk
4 GB Memory
> 1L
'O [L3 cache]
o] —
(4]
Q

[L2cache |

[L1 cache]

Ensure Reproducibility

* Unless it is truly confidential, post your code
for others to use.

 For random data, post how you generated it

* For real-world data, post how to get it

DON'T WORRY, You CAN RE-USE THE \
You DON'T HAVE
TO START YOUR

CODE FROM
SCRATCH,

WWW.PHDCOMICS.COM

Ensure Comparability

* Perform all experiments on the same
nardware

* Report the type of hardware used

* Code all algorithms with the same level of
code optimizations and tuning

Present your Data in Meaningful Ways

* Use tables only for small data sets

100 316 1,000 3,162 10,000 31,623 100,000 316,227 1,000,000
Algorithm A | 0.00 0.02 0.08 0.29 1.05 5.46 23.0 89.6 377
Algorithm B | 0.00 0.03 0.11 0.35 1.38 6.50 30.6 173.3 669
Algorithm C | 0.01 0.06 0.21 0.71 2.79 10.98 42.7 329.5 1253
Algorithm D | 0.02 0.09 0.43 1.64 6.98 37.51 192.4 789.7 9465
Algorithm E | 0.03 0.14 0.57 2.14 1042 55.36 369.4 5775.0 33414

Running Time versus Instance Size

30000
I

20000
L

Log Log Scale

