
Some slides from CS 15-853:Algorithms in the Real World,
Carnegie Mellon University

Generating Random and
Pseudorandom Numbers

Michael Goodrich
CS 165

Random Numbers in the Real World

Page2https://xkcd.com/221/

https://fitforrandomness.files.wordpress.com/2010/11/dilbert-does-randomness.jpg

https://xkcd.com/221/
https://fitforrandomness.files.wordpress.com/2010/11/dilbert-does-randomness.jpg

Random number sequence definitions

Randomness of a sequence is the
Kolmogorov complexity of the
sequence (size of smallest Turing
machine that generates the
sequence) – infinite sequence should
require infinite size Turing machine.

This definition is useful for proving
computational complexity results,
but it is not as useful for algorithm
experiments.

Page3

Andrey Kolmogorov

Random number sequence definitions

Each element is chosen independently
from a probability distribution
[Donald Knuth].

This definition is more usable for
algorithm experiments.

A typical distribution is the uniform
distribution, where every number in
a range of numbers is equally likely.

Page4

Donald Knuth

Environmental Sources of Randomness
Radioactive decay http://www.fourmilab.ch/hotbits/

Radio frequency noise http://www.random.org

Noise generated by a resistor or diode.

– Canada http://www.tundra.com/ (find the data encryption
section, then look under RBG1210. My device is an NM810 which
is 2?8? RBG1210s on a PC card)

– Colorado http://www.comscire.com/
– Holland http://valley.interact.nl/av/com/orion/home.html
– Sweden http://www.protego.se

Inter-keyboard timings (watch out for buffering)

Inter-interrupt timings (for some interrupts)

Page5

http://www.fourmilab.ch/hotbits/
http://www.random.org/
http://www.tundra.com/
http://www.comscire.com/
http://valley.interact.nl/av/com/orion/home.html
http://www.protego.se/

Combining Sources of Randomness
Suppose r1, r2, …, rk are random numbers from

different sources. E.g.,

r1 = from JPEG file
r2 = sample of hip-hop music on radio
r3 = clock on computer

b = r1 Å r2 Å … Å rk

If any one of r1, r2, …, rk is truly random, then so is b.

Page6

Skew Correction
Von Neumann’s algorithm – converts biased random

bits to unbiased random bits:

Collect two random bits.

Discard if they are identical.

Otherwise, use first bit.

Efficiency?

Page7

John von Neumann

Chi Square Test
Experiment with k outcomes, performed n times.
p1, …, pk denote probability of each outcome
Y1, …, Yk denote number of times each outcome occured

Large X2 indicates deviance from random chance

Page8

Analysis of random.org numbers
John Walker’s Ent program

Entropy = 7.999805 bits per character.
Optimum compression would reduce the size of this

1048576 character file by 0 percent.
 Chi square distribution for 1048576 samples is

283.61, and randomly would exceed this value
25.00 percent of the times.

 Arithmetic mean value of data bytes is 127.46
(127.5 = random).

 Monte Carlo value for PI is 3.138961792 (error
0.08 percent).

 Serial correlation coefficient is 0.000417
(totally uncorrelated = 0.0

Page9

Analysis of JPEG file

Entropy = 7.980627 bits per character.
Optimum compression would reduce the size of this

51768 character file by 0 percent.
Chi square distribution for 51768 samples is

1542.26, and randomly would exceed this value
0.01 percent of the times.

 Arithmetic mean value of data bytes is 125.93
(127.5 = random).

 Monte Carlo value for Pi is 3.169834647 (error
0.90 percent).

 Serial correlation coefficient is 0.004249
(totally uncorrelated = 0.0).

Page10

Pseudorandom Number Generators
• A pseudorandom number generator (PRNG) is an

algorithm for generating a sequence of numbers
whose properties approximate the properties of
sequences of random numbers.

• The PRNG-generated sequence is not truly
random, because it is completely determined by an
initial value, called the PRNG's seed (which may
include truly random values).

• Although sequences that are closer to truly
random can be generated using hardware random
number generators, pseudorandom number
generators are important in practice for their
speed and reproducibility.

Page11

Pseudorandom Number Generators
• PRNGs are central in applications such as

simulations (e.g. for the Monte Carlo method),
electronic games (e.g. for procedural generation),
and cryptography.

• Cryptographic applications require the output not
to be predictable from earlier outputs.

Page12

“Anyone who considers arithmetical
methods of producing random digits
is, of course, in a state of sin.”

 - John Von Neumann, 1951

Simple Visual Test
• Create a visualization of the consecutive tuples of

numbers it produces.
• Humans are really good at spotting patterns.

Page13

Linear Congruential Generator (LCG)
x0 = given, x n+1 = P1 xn + P2 (mod N) n = 0,1,2,... (*)

x 0 =79, N = 100, P 1 = 263, and P 2 = 71

x1 = 79*263 + 71 (mod 100) = 20848 (mod 100) = 48,
x2 = 48*263 + 71 (mod 100) = 12695 (mod 100) = 95,
x3 = 95*263 + 71 (mod 100) = 25056 (mod 100) = 56,
x4 = 56*263 + 71 (mod 100) = 14799 (mod 100) = 99,

Sequence: 79, 48, 95, 56, 99, 8, 75, 96, 68, 36, 39, 28, 35, 76, 59, 88,
15, 16, 79, 48, 95

Park and Miller:
 P1 = 16807, P2 = 0, N= 231-1 = 2147483647, x0 = 1.

ANSI C rand():

P1 = 1103515245, P2 = 12345, N = 231, x0 = 12345

Page14

Example Comparison

Page15

Plot (xi, xi+1)

Page16

Plot (xi, xi+1)

Park and Miller

Page17

(xi, xi+1), (xi,xi+2), (xi, xi+2)

http://www.math.utah.edu/~alfeld/Random/Random.html
Page18

http://www.math.utah.edu/~alfeld/Random/Random.html

Visual Test in 3D
• Three-dimensional plot of 100,000 values

generated with IBM RANDU routine. Each point
represents 3 consecutive pseudorandom values.

• It is clearly seen that the points fall in 15 two-
dimensional planes.

Page19

Matsumoto’s Marsenne Twister

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

Considered one of the best linear
congruential generators.

Page20

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

Example Visual Test

Page21

Cryptographically Strong Pseudorandom
Number Generator

Next-bit test: Given a sequence of bits x1, x2, …, xk,
there is no polynomial time algorithm to generate
xk+1.

Yao [1982]: A sequence that passes the next-bit test
passes all other polynomial-time statistical tests
for randomness.

Page22

Hash/Encryption Chains

Hash or Encryption Functionkey

xi

xi+1

Last bit
of xi+1

(need a random seed x0 or key value)

Page23

Some Cryptographic Hash Functions
• SHA-1 Hash function https://en.wikipedia.org/wiki/SHA-1

• MD5 Hash function https://en.wikipedia.org/wiki/MD5

• These functions are good pseudo-random number
generators and when seeded with a random number
generator, they provide good sequences for use in
algorithm experiments.

Page24

https://en.wikipedia.org/wiki/SHA-1
https://en.wikipedia.org/wiki/MD5

BBS “secure” random bits
BBS (Blum, Blum and Shub, 1984)

– Based on difficulty of factoring, or finding
square roots modulo n = pq.

Fixed
• p and q are primes such

that p = q = 3 (mod 4)
• n = pq (is called a Blum

integer)

For a particular bit seq.
• Seed: random x

relatively prime to n.
• Initial state: x0 = x2

• ith state: xi = (xi-1)2

• ith bit: lsb of xi

Note that:
Therefore knowing p and q allows us to find x0 from xi

)(mod)(mod2
0 nxx n

i
i f-=

25

Random Numbers in Python
https://docs.python.org/3/library/random.html

[Review this website]

26

https://docs.python.org/3/library/random.html

