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Random Numbers in the Real World

Page2https://xkcd.com/221/

https://fitforrandomness.files.wordpress.com/2010/11/dilbert-does-randomness.jpg

https://xkcd.com/221/
https://fitforrandomness.files.wordpress.com/2010/11/dilbert-does-randomness.jpg


Random number sequence definitions

Randomness of a sequence is the 
Kolmogorov complexity of the 
sequence (size of smallest Turing 
machine that generates the 
sequence) – infinite sequence should 
require infinite size Turing machine.

This definition is useful for proving 
computational complexity results, 
but it is not as useful for algorithm 
experiments.
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Random number sequence definitions

Each element is chosen independently 
from a probability distribution 
[Donald Knuth].

This definition is more usable for 
algorithm experiments. 

A typical distribution is the uniform 
distribution, where every number in 
a range of numbers is equally likely. 
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Environmental Sources of Randomness
Radioactive decay http://www.fourmilab.ch/hotbits/

Radio frequency noise http://www.random.org

Noise generated by a resistor or diode.

– Canada http://www.tundra.com/ (find the data encryption 
section, then look under RBG1210. My device is an NM810 which 
is 2?8? RBG1210s on a PC card) 

– Colorado http://www.comscire.com/ 
– Holland http://valley.interact.nl/av/com/orion/home.html 
– Sweden http://www.protego.se 

Inter-keyboard timings (watch out for buffering)

Inter-interrupt timings (for some interrupts)
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Combining Sources of Randomness
Suppose r1, r2, …, rk are random numbers from 

different sources.  E.g.,

r1 = from JPEG file
r2 = sample of hip-hop music on radio
r3 = clock on computer

b = r1 Å r2 Å … Å rk

If any one of r1, r2, …, rk is truly random, then so is b.
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Skew Correction
Von Neumann’s algorithm – converts biased random 

bits to unbiased random bits:

Collect two random bits.

Discard if they are identical.

Otherwise, use first bit.

Efficiency?
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Chi Square Test
Experiment with k outcomes, performed n times.
p1, …, pk denote probability of each outcome 
Y1, …, Yk denote number of times each outcome occured

Large X2 indicates deviance from random chance
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Analysis of random.org numbers 
John Walker’s Ent program

Entropy = 7.999805 bits per character.
Optimum compression would reduce the size of this 

1048576 character file by 0 percent.
 Chi square distribution for 1048576 samples is 

283.61, and randomly would exceed this value 
25.00 percent of the times.

 Arithmetic mean value of data bytes is 127.46 
(127.5 = random).

 Monte Carlo value for PI is 3.138961792 (error 
0.08 percent).

 Serial correlation coefficient is 0.000417 
(totally uncorrelated = 0.0 
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Analysis of JPEG file

Entropy = 7.980627 bits per character.
Optimum compression would reduce the size of this 

51768 character file by 0 percent.
Chi square distribution for 51768 samples is 

1542.26, and randomly would exceed this value 
0.01 percent of the times.

 Arithmetic mean value of data bytes is 125.93 
(127.5 = random).

 Monte Carlo value for Pi is 3.169834647 (error 
0.90 percent).

 Serial correlation coefficient is 0.004249 
(totally uncorrelated = 0.0). 
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Pseudorandom Number Generators
• A pseudorandom number generator (PRNG) is an 

algorithm for generating a sequence of numbers 
whose properties approximate the properties of 
sequences of random numbers. 

• The PRNG-generated sequence is not truly 
random, because it is completely determined by an 
initial value, called the PRNG's seed (which may 
include truly random values). 

• Although sequences that are closer to truly 
random can be generated using hardware random 
number generators, pseudorandom number 
generators are important in practice for their 
speed and reproducibility.

Page11



Pseudorandom Number Generators
• PRNGs are central in applications such as 

simulations (e.g. for the Monte Carlo method), 
electronic games (e.g. for procedural generation), 
and cryptography. 

• Cryptographic applications require the output not 
to be predictable from earlier outputs.
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Simple Visual Test
• Create a visualization of the consecutive tuples of 

numbers it produces.
• Humans are really good at spotting patterns.
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Linear Congruential Generator (LCG)
x0 = given,  x n+1 = P1 xn + P2  (mod N)  n = 0,1,2,...  (*) 

x 0 =79, N = 100, P 1 = 263, and P 2 = 71
 
x1 = 79*263 + 71 (mod 100) = 20848 (mod 100) = 48, 
x2 = 48*263 + 71 (mod 100) = 12695 (mod 100) = 95, 
x3 = 95*263 + 71 (mod 100) = 25056 (mod 100) = 56, 
x4 = 56*263 + 71 (mod 100) = 14799 (mod 100) = 99, 

Sequence: 79, 48, 95, 56, 99, 8, 75, 96, 68, 36, 39, 28, 35, 76, 59, 88, 
15, 16, 79, 48, 95

Park and Miller:
 P1 = 16807, P2 = 0, N= 231-1 = 2147483647, x0 = 1.

ANSI C rand():

P1 = 1103515245, P2 = 12345, N = 231, x0 = 12345
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Example Comparison
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Plot (xi, xi+1)
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Plot (xi, xi+1)

Park and Miller
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(xi, xi+1),  (xi,xi+2), (xi, xi+2)

http://www.math.utah.edu/~alfeld/Random/Random.html
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Visual Test in 3D
• Three-dimensional plot of 100,000 values 

generated with IBM RANDU routine. Each point 
represents 3 consecutive pseudorandom values.

• It is clearly seen that the points fall in 15 two-
dimensional planes.

Page19



Matsumoto’s Marsenne Twister

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

Considered one of the best linear 
congruential generators.
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Example Visual Test
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Cryptographically Strong Pseudorandom 
Number Generator

Next-bit test: Given a sequence of bits x1, x2, …, xk, 
there is no polynomial time algorithm to generate 
xk+1.

Yao [1982]: A sequence that passes the next-bit test 
passes all other polynomial-time statistical tests 
for randomness.
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Hash/Encryption Chains

Hash or Encryption Functionkey

xi

xi+1

Last bit 
of xi+1

(need a random seed x0 or key value)
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Some Cryptographic Hash Functions 
• SHA-1 Hash function https://en.wikipedia.org/wiki/SHA-1

• MD5 Hash function https://en.wikipedia.org/wiki/MD5

• These functions are good pseudo-random number 
generators and when seeded with a random number 
generator, they provide good sequences for use in 
algorithm experiments.
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BBS “secure” random bits
BBS (Blum, Blum and Shub, 1984)

– Based on difficulty of factoring, or finding 
square roots modulo n = pq.

Fixed
• p and q are primes such 

that p = q = 3 (mod 4)
• n = pq (is called a Blum 

integer)

For a particular bit seq.
• Seed: random x 

relatively prime to n.
• Initial state: x0 = x2

• ith state: xi = (xi-1)2

• ith bit: lsb of xi

Note that:
Therefore knowing p and q allows us to find x0 from xi

)(mod)(mod2
0 nxx n

i
i f-=
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Random Numbers in Python
https://docs.python.org/3/library/random.html

[Review this website]
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