
Environment Variables
&

Attacks

Environment Variables
• A set of dynamic named values
• Part of the operating environment in which a process runs
• Affect the way that a running process will behave
• Introduced in Unix and also adopted by Microsoft Windows
• Example: PATH variable
• When a program is executed the shell process will use the environment

variable to find where the program is, if the full path is not provided.

How to Access Environment Variables

From the main function

More reliable way:
Using the global variable

How Does a process get Environment Variables?
• Process can get environment variables one of two ways:
• If a new process is created using fork() system call, the child process will

inherits its parent process’s environment variables.

• If a process runs a new program in itself, it typically uses execve() system call. In
this scenario, the memory space is overwritten and all old environment
variables are lost. execve() can be invoked in a special manner to pass
environment variables from one process to another.

• Passing environment variables when invoking execve() :

execve() and Environment variables
• The program executes a

new program
/usr/bin/env, which
prints out the
environment variables of
the current process.

• We construct a new
variable newenv, and
use it as the 3rd
argument.

execve() and Environment variables

Obtained from
the parent

process

Memory Location for Environment Variables

• envp and environ points to the
same place initially.
• envp is only accessible inside the

main function, while environ is a
global variable.
• When changes are made to the

environment variables (e.g., new
ones are added), the location for
storing the environment variables
may be moved to the heap, so
environ will change (envp does
not change)

Shell Variables & Environment Variables
• People often mistake shell variables and environment variables to be

the same.
• Shell Variables:
• Internal variables used by shell.
• Shell provides built-in commands to allow users to create, assign and delete shell

variables.
• In the example, we create a shell variable called FOO.

Side Note on The /proc File System

• /proc is a virtual file system in linux. It contains a directory for each
process, using the process ID as the name of the directory

• Each process directory has a virtual file called environ, which contains
the environment of the process.

• e.g., virtual file /proc/932/environ contains the environment variable of
process 932

• The command “strings /proc/$$/environ” prints out the environment
variable of the current process (shell will replace $$ with its own process ID)

• When env program is invoked in a bash shell, it runs in a child process.
Therefore, it print out the environment variables of the shell’s child
process, not its own.

Shell Variables & Environment Variables
• Shell variables and environment variables are different
• When a shell program starts, it copies the environment variables into its

own shell variables. Changes made to the shell variable will not reflect
on the environment variables, as shown in example :

Environment variable

Shell variable

Shell variable is changed

Environment variable is the same

Environment variable is still here

Shell variable is gone

Shell Variables & Environment Variables

• This figure shows how
shell variables affect the
environment variables of
child processes

• It also shows how the
parent shell’s environment
variables becomes the
child process’s
environment variables (via
shell variables)

Shell Variables & Environment Variables

• When we type env in shell prompt, shell will create a child process

Print out environment variable

Only LOGNAME and LOGNAME3
get into the child process, but
not LOGNAME2. Why?

Attack Surface on Environment Variables

• Hidden usage of
environment variables is
dangerous.
• Since users can set

environment variables,
they become part of the
attack surface on Set-UID
programs.

Attacks via Dynamic Linker
• Linking finds the external library code referenced in the program
• Linking can be done during runtime or compile time:
• Dynamic Linking – uses environment variables, which becomes part of the

attack surface
• Static Linking

• We will use the following example to differentiate static and dynamic
linking:

Attacks via Dynamic Linker
Static Linking
• The linker combines the program’s code and the library code

containing the printf() function
• We can notice that the size of a static compiled program is 100 times

larger than a dynamic program

Attacks via Dynamic Linker
Dynamic Linking
• The linking is done during runtime
• Shared libraries (DLL in windows)

• Before a program compiled with dynamic linking is run, its executable
is loaded into the memory first

Attacks via Dynamic Linker
Dynamic Linking:
• We can use “ldd” command to see what shared libraries a program

depends on :

for system calls

The libc library (contains functions
like printf() and sleep())

The dynamic linker itself is in a shared
library. It is invoked before the main
function gets invoked.

Attacks via Dynamic Linker: the Risk
• Dynamic linking saves memory

• This means that a part of the program’s code is undecided during the
compilation time

• If the user can influence the missing code, they can compromise the
integrity of the program

Attacks via Dynamic Linker: Case Study 1
• LD_PRELOAD contains a list of shared libraries which will be searched

first by the linker

• If not all functions are found, the linker will search among several lists
of folder including the one specified by LD_LIBRARY_PATH

•Both variables can be set by users, so it gives them an opportunity to
control the outcome of the linking process

• If that program were a Set-UID program, it may lead to security
breaches

Attacks via Dynamic Linker: Case Study 1
Example 1 – Normal Programs:
• Program calls sleep function which is dynamically linked:

• Now we implement our own sleep() function:

Attacks via Dynamic Linker: Case Study 1
Example 1 – Normal Programs (continued):
• We need to compile the above code, create a shared library and add the shared

library to the LD_PRELOAD environment variable

Attacks via Dynamic Linker: Case Study
Example 2 – Set-UID Programs:
• If the technique in example 1 works for Set-UID program, it can be very

dangerous. Lets convert the above program into Set-UID :

• Our sleep() function was not invoked.
• This is due to a countermeasure implemented by the dynamic linker. It ignores the

LD_PRELOAD and LD_LIBRARY_PATH environment variables when the EUID and RUID differ.

• Lets verify this countermeasure with an example in the next slide.

Attacks via Dynamic Linker
Let’s verify the countermeasure
• Make a copy of the env program and make it a Set-UID program :

• Export LD_LIBRARY_PATH and LD_PRELOAD and run both the programs:

Run the original
env program

Run our env
program

Attacks via Dynamic Linker: Case Study 2
Case study: OS X Dynamic Linker
• As discussed in Chapter 1 (in capability leaking), apple OS X 10.10 introduced a

new environment variable without analyzing its security implications perfectly.
• DYLD_PRINT_TO_FILE

• Ability for users to supply filename for dyld
• If it is a Set-UID program, users can write to a protected file
• Capability leak – file descriptor not closed

• Exploit example:
• Set DYLD_PRINT_TO_FILE to /etc/sudoers
• Switch to Bob’s account
• The echo command writes to /etc/sudoers

Attacks via External Program
• An application may invoke an external program.
• The application itself may not use environment variables, but the invoked

external program might.
• Typical ways of invoking external programs:
• exec() family of function which call execve(): runs the program directly
• system()
• The system() function calls execl()
• execl()eventually calls execve()to run /bin/sh
• The shell program then runs the program

• Attack surfaces differ for these two approaches
• We have discussed attack surfaces for such shell programs in Chapter 1. Here we

will focus on the Environment variables aspect.

Attacks via External Program: Case Study
• Shell programs behavior is affected by many environment variables, the most

common of which is the PATH variable.
• When a shell program runs a command and the absolute path is not provided, it

uses the PATH variable to locate the command.
• Consider the following code:

• We will force the above program to execute the following program :

Full path not provided. We can
use this to manipulate the path
variable

Attacks via External Program: Case Study

We will first run the
first program without
doing the attack

We now change the
PATH environment
variable

Attacks via External Program: Attack Surfaces

• Compared to system(), execve()’s attack surface is smaller
• execve() does not invoke shell, and thus is not affected by

environment variables
• When invoking external programs in privileged programs, we should

use execve()
• Refer to Chapter 1 for more information

Attacks via Library
Programs often use functions from external libraries. If these functions
use environment variables, they add to the attack surface
Case Study – Locale in UNIX
• Every time a message needs to be printed out, the program uses the

provided library functions for the translated message
• Unix uses the gettext() and catopen() in the libc library
• The following code shows how a program can use locale subsystem :

Attacks via Library

• This subsystem relies on the following environment variables : LANG,
LANGUAGE, NLSPATH, LOCPATH, LC_ALL, LC_MESSAGES
• These variables can be set by users, so the translated message can be

controlled by users.
• Attacker can use format string vulnerability to format the printf()

function – More information in chapter 6
• Countermeasure:
• This lies with the library author
• Example: Conectiva Linux using the Glibc 2.1.1 library explicitly checks and

ignored the NSLPATH environment variable if catopen() and catgets()
functions are called from a Set-UID program

Attacks via Application Code

Programs may
directly use
environment
variables. If these
are privileged
programs, it may
result in
untrusted inputs.

Attacks via Application Code
• The program uses getenv() to know

its current directory from the PWD
environment variable

• The program then copies this into an
array “arr”, but forgets to check the
length of the input. This results in a
potential buffer overflow.

• Value of PWD comes from the shell
program, so every time we change
our folder the shell program updates
its shell variable.

• We can change the shell variable
ourselves.

Current directory
with unmodified
shell variable

Current directory
with modified shell
variable

Attacks via Application Code - Countermeasures

• When environment variables are used by privileged Set-UID
programs, they must be sanitized properly.

• Developers may choose to use a secure version of getenv(), such as
secure_getenv().
• getenv() works by searching the environment variable list and returning a

pointer to the string found, when used to retrieve a environment variable.
• secure_getenv() works the exact same way, except it returns NULL when

“secure execution” is required.
• Secure execution is defined by conditions like when the process’s user/group

EUID and RUID don’t match

Set-UID Approach VS Service Approach

Normal-User Process

Privileged Process
(Conduct privileged operations

for users)

Privileged Process

Privileged Process
(Conduct privileged operations

for users)

Normal User
Process

Environment
Variables

Environment
Variables

(a) Set-UID Approach (b) Service Approach

Request for
service

Set-UID Approach VS Service Approach
• Most operating systems follow two approaches to allow normal users to perform

privileged operations
• Set-UID approach: Normal users have to run a special program to gain root privileges

temporarily
• Service approach: Normal users have to have to request a privileged service to perform the

actions for them. Figure in the earlier slide depicts these two approaches

• Set-UID has a much broader attack surface, which is caused by environment
variables
• Environment variables cannot be trusted in Set-UID approach
• Environment variables can be trusted in Service approach

• Although, the other attack surfaces still apply to Service approach (Discussed in
Chapter 1), it is considered safer than Set-UID approach
• Due to this reason, the Android operating system completely removed the Set-

UID and Set-GID mechanism

Summary

• What are environment variables
• How they get passed from one process to its children
• How environment variables affect the behaviors of programs
• Risks introduced by environment variables
• Case studies
• Attack surface comparison between Set-UID and service approaches

