
42 Chapter 1. Algorithm Analysis

1.5 Exercises

Reinforcement
R-1.1 Graph the functions 12n, 6n logn, n2, n3, and 2n using a logarithmic scale for

the x- and y-axes; that is, if the function value f(n) is y, plot this as a point with
x-coordinate at logn and y-coordinate at log y.

R-1.2 Show that the MaxsubSlow algorithm runs in Ω(n3) time.

R-1.3 Algorithm A uses 10n logn operations, while algorithm B uses n2 operations.
Determine the value n0 such that A is better than B for n ≥ n0.

R-1.4 Repeat the previous problem assuming B uses n
√
n operations.

R-1.5 Show that log3 n is o(n1/3).

R-1.6 Show that the following two statements are equivalent:

(a) The running time of algorithm A is always O(f(n)).

(b) In the worst case, the running time of algorithm A is O(f(n)).

R-1.7 Order the following list of functions by the big-Oh notation. Group together (for
example, by underlining) those functions that are big-Theta of one another.

6n logn 2100 log logn log2 n 2logn

22
n ⌈

√
n⌉ n0.01 1/n 4n3/2

3n0.5 5n ⌊2n log2 n⌋ 2n n log4 n

4n n3 n2 logn 4logn
√
logn

Hint: When in doubt about two functions f(n) and g(n), consider log f(n) and
log g(n) or 2f(n) and 2g(n).

R-1.8 For each function f(n) and time t in the following table, determine the largest
size n of a problem that can be solved in time t assuming that the algorithm
to solve the problem takes f(n) microseconds. Recall that logn denotes the
logarithm in base 2 of n. Some entries have already been completed to get you
started.

1 Second 1 Hour 1 Month 1 Century

logn ≈ 10300000
√
n

n

n logn

n2

n3

2n

n! 12



1.5. Exercises 43

R-1.9 Bill has an algorithm, find2D, to find an element x in an n × n array A. The
algorithm find2D iterates over the rows of A and calls the algorithm arrayFind,
of Algorithm 1.12, on each one, until x is found or it has searched all rows of A.
What is the worst-case running time of find2D in terms of n? Is this a linear-time
algorithm? Why or why not?

R-1.10 Consider the following recurrence equation, defining T (n), as

T (n) =

{

4 if n = 1
T (n− 1) + 4 otherwise.

Show, by induction, that T (n) = 4n.

R-1.11 Give a big-Oh characterization, in terms of n, of the running time of the Loop1
method shown in Algorithm 1.21.

R-1.12 Perform a similar analysis for method Loop2 shown in Algorithm 1.21.

R-1.13 Perform a similar analysis for method Loop3 shown in Algorithm 1.21.

R-1.14 Perform a similar analysis for method Loop4 shown in Algorithm 1.21.

R-1.15 Perform a similar analysis for method Loop5 shown in Algorithm 1.21.

Algorithm Loop1(n):

s← 0
for i← 1 to n do

s← s+ i

Algorithm Loop2(n):

p← 1
for i← 1 to 2n do

p← p · i

Algorithm Loop3(n):

p← 1
for i← 1 to n2 do

p← p · i

Algorithm Loop4(n):

s← 0
for i← 1 to 2n do

for j ← 1 to i do
s← s+ i

Algorithm Loop5(n):

s← 0
for i← 1 to n2 do

for j ← 1 to i do
s← s+ i

Algorithm 1.21: A collection of loop methods.



44 Chapter 1. Algorithm Analysis

R-1.16 Show that if f(n) is O(g(n)) and d(n) is O(h(n)), then the summation f(n) +
d(n) is O(g(n) + h(n)).

R-1.17 Show that O(max{f(n), g(n)}) = O(f(n) + g(n)).

R-1.18 Show that f(n) is O(g(n)) if and only if g(n) is Ω(f(n)).

R-1.19 Show that if p(n) is a polynomial in n, then log p(n) is O(log n).

R-1.20 Show that (n+ 1)5 is O(n5).

R-1.21 Show that 2n+1 is O(2n).

R-1.22 Show that n is o(n logn).

R-1.23 Show that n2 is ω(n).

R-1.24 Show that n3 logn is Ω(n3).

R-1.25 Show that ⌈f(n)⌉ is O(f(n)) if f(n) is a positive nondecreasing function that is
always greater than 1.

R-1.26 Justify the fact that if d(n) is O(f(n)) and e(n) is O(g(n)), then the product
d(n)e(n) is O(f(n)g(n)).

R-1.27 Given the values of the maximum suffix sums, Mt (t = 1, · · · , 11), for the array
A = [−2,−4, 3,−1, 5, 6,−7,−2, 4,−3, 2].

R-1.28 What is the amortized running time of an operation in a series of n add operations
on an initially empty extendable table implemented with an array such that the
capacityIncrement parameter is always maintained to be ⌈log(m+1)⌉, wherem
is the number of elements of the stack? That is, each time the table is expanded
by ⌈log(m + 1)⌉ cells, its capacityIncrement is reset to ⌈log(m′ + 1)⌉ cells,
where m is the old size of the table and m′ is the new size (in terms of actual
elements present).

R-1.29 Describe a recursive algorithm for finding both the minimum and the maximum
elements in an array A of n elements. Your method should return a pair (a, b),
where a is the minimum element and b is the maximum. What is the running
time of your method?

R-1.30 Suppose you have an array of n numbers and you select each one independently
with probability 1/n1/2. Use the Chernoff bound to determine an upper bound
on the probability that you would have more than 4n1/2 elements in this random
sample.

R-1.31 Rewrite the proof of Theorem 1.31 under the assumption that the cost of growing
the array from size k to size 2k is 3k cyber-dollars. How much should each add
operation be charged to make the amortization work?

R-1.32 Suppose we have a set of n balls and we choose each one independently with
probability 1/n1/2 to go into a basket. Derive an upper bound on the probability
that there are more than 3n1/2 balls in the basket.



1.5. Exercises 45

Creativity
C-1.1 Describe how to modify the description of the MaxsubFastest algorithm so that,

in addition to the value of the maximum subarray summation, it also outputs the
indices j and k that identify the maximum subarray A[j : k].

C-1.2 Describe how to modify the MaxsubFastest algorithm so that it uses just a sin-
gle loop and, instead of computing n+ 1 different Mt values, it maintains just a
single variable M .

C-1.3 What is the amortized running time of the operations in a sequence of n opera-
tions P = p1p2 . . . pn if the running time of pi is Θ(i) if i is a multiple of 3, and
is constant otherwise?

C-1.4 What is the total running time of counting from 1 to n in binary if the time needed
to add 1 to the current number i is proportional to the number of bits in the binary
expansion of i that must change in going from i to i+ 1?

C-1.5 Consider the following recurrence equation, defining a function T (n):

T (n) =

{

1 if n = 1
T (n− 1) + n otherwise,

Show, by induction, that T (n) = n(n+ 1)/2.

C-1.6 Consider the following recurrence equation, defining a function T (n):

T (n) =

{

1 if n = 0
T (n− 1) + 2n otherwise,

Show, by induction, that T (n) = 2n+1 − 1.

C-1.7 Consider the following recurrence equation, defining a function T (n):

T (n) =

{

1 if n = 0
2T (n− 1) otherwise,

Show, by induction, that T (n) = 2n.

C-1.8 Al and Bill are arguing about the performance of their sorting algorithms. Al
claims that his O(n logn)-time algorithm is always faster than Bill’s O(n2)-
time algorithm. To settle the issue, they implement and run the two algorithms
on many randomly generated data sets. To Al’s dismay, they find that if n < 100,
the O(n2)-time algorithm actually runs faster, and only when n ≥ 100 is the
O(n logn)-time algorithm better. Explain why this scenario is possible. You
may give numerical examples.

C-1.9 Give an example of a positive function f(n) such that f(n) is neither O(n) nor
Ω(n).

C-1.10 Show that
∑n

i=1 i
2 is O(n3).

C-1.11 Show that
∑n

i=1 i/2
i < 2.

Hint: Try to bound this sum term by term with a geometric progression.



46 Chapter 1. Algorithm Analysis

C-1.12 Show that logb f(n) is Θ(log f(n)) if b > 1 is a constant.

C-1.13 Describe a method for finding both the minimum and maximum of n numbers
using fewer than 3n/2 comparisons.

Hint: First construct a group of candidate minimums and a group of candidate
maximums.

C-1.14 An n-degree polynomial p(x) is an equation of the form

p(x) =
n
∑

i=0

aix
i,

where x is a real number and each ai is a constant.

a. Describe a simple O(n2)-time method for computing p(x) for a particular
value of x.

b. Consider now a rewriting of p(x) as

p(x) = a0 + x(a1 + x(a2 + x(a3 + · · ·+ x(an−1 + xan) · · · ))),

which is known as Horner’s method. Using the big-Oh notation, character-
ize the number of multiplications and additions this method of evaluation
uses.

C-1.15 Consider the following induction “proof” that all sheep in a flock are the same
color:

Base case: One sheep. It is clearly the same color as itself.

Induction step: A flock of n sheep. Take a sheep, a, out of the flock. The
remaining n − 1 are all the same color by induction. Now put sheep a back in
the flock, and take out a different sheep, b. By induction, the n − 1 sheep (now
with a in their group) are all the same color. Therefore, a is the same color as all
the other sheep; hence, all the sheep in the flock are the same color.

What is wrong with this “proof”?

C-1.16 Consider the following “proof” that the Fibonacci function, F (n), defined as
F (1) = 1, F (2) = 2, F (n) = F (n− 1) + F (n− 2), is O(n):
Base case (n ≤ 2): F (1) = 1, which is O(1), and F (2) = 2, which is O(2).
Induction step (n > 2): Assume the claim is true for n′ < n. Consider n.
F (n) = F (n−1)+F (n−2). By induction, F (n−1) is O(n−1) and F (n−2)
is O(n − 2). Then, F (n) is O((n − 1) + (n − 2)), by the identity presented in
Exercise R-1.16. Therefore, F (n) is O(n), since O((n− 1)+ (n− 2)) is O(n).
What is wrong with this “proof”?

C-1.17 Consider the Fibonacci function, F (n), from the previous exercise. Show by
induction that F (n) is Ω((3/2)n).

C-1.18 Draw a visual justification of Theorem 1.13 analogous to that of Figure 1.11b for
the case when n is odd.

C-1.19 An array A contains n− 1 unique integers in the range [0, n− 1]; that is, there is
one number from this range that is not in A. Design an O(n)-time algorithm for
finding that number. You are allowed to use only O(1) additional space besides
the array A itself.



1.5. Exercises 47

C-1.20 Show that the summation
∑n

i=1⌈log2 i⌉ is O(n log n).

C-1.21 Show that the summation
∑n

i=1⌈log2 i⌉ is Ω(n logn).

C-1.22 Show that the summation
∑n

i=1⌈log2(n/i)⌉ is O(n). You may assume that n is
a power of 2.

Hint: Use induction to reduce the problem to that for n/2.

C-1.23 Let S be a set of n lines such that no two are parallel and no three meet in the
same point. Show by induction that the lines in S determine Θ(n2) intersection
points.

C-1.24 Suppose that each row of an n × n array A consists of 1’s and 0’s such that, in
any row of A, all the 1’s come before any 0’s in that row. Assuming A is already
in memory, describe a method running in O(n) time (not O(n2) time) for finding
the row of A that contains the most 1’s.

C-1.25 Suppose that each row of an n×n array A consists of 1’s and 0’s such that, in any
row i of A, all the 1’s come before any 0’s in that row. Suppose further that the
number of 1’s in row i is at least the number in row i+1, for i = 0, 1, . . . , n− 2.
Assuming A is already in memory, describe a method running in O(n) time (not
O(n2) time) for counting the number of 1’s in the array A.

C-1.26 Describe, using pseudocode, a method for multiplying an n ×m matrix A and
an m× p matrix B. Recall that the product C = AB is defined so that C[i][j] =
∑m

k=1 A[i][k] ·B[k][j]. What is the running time of your method?

C-1.27 Give a recursive algorithm to compute the product of two positive integers m and
n using only addition.

C-1.28 Give complete pseudocode for a new class, ShrinkingTable, that performs the
add method of the extendable table, as well as methods, remove(), which re-
moves the last (actual) element of the table, and shrinkToFit(), which replaces
the underlying array with an array whose capacity is exactly equal to the number
of elements currently in the table.

C-1.29 Consider an extendable table that supports both add and remove methods, as de-
fined in the previous exercise. Moreover, suppose we grow the underlying array
implementing the table by doubling its capacity any time we need to increase the
size of this array, and we shrink the underlying array by half any time the number
of (actual) elements in the table dips below N/4, where N is the current capacity
of the array. Show that a sequence of n add and remove methods, starting from
an array with capacity N = 1, takes O(n) time.

C-1.30 Consider an implementation of the extendable table, but instead of copying the
elements of the table into an array of double the size (that is, from N to 2N )
when its capacity is reached, we copy the elements into an array with ⌈

√
N⌉

additional cells, going from capacity N to N + ⌈
√
N⌉. Show that performing a

sequence of n add operations (that is, insertions at the end) runs in Θ(n3/2) time
in this case.



48 Chapter 1. Algorithm Analysis

Applications
A-1.1 Communication security is extremely important in computer networks, and one

way many network protocols achieve security is to encrypt messages. Typical
cryptographic schemes for the secure transmission of messages over such net-
works are based on the fact that no efficient algorithms are known for factoring
large integers. Hence, if we can represent a secret message by a large prime
number p, we can transmit over the network the number r = p · q, where q > p
is another large prime number that acts as the encryption key. An eavesdropper
who obtains the transmitted number r on the network would have to factor r in
order to figure out the secret message p.

Using factoring to figure out a message is very difficult without knowing the
encryption key q. To understand why, consider the following naive factoring
algorithm:

For every integer p such that 1 < p < r, check whether p divides r.
If so, print “The secret message is p!” and stop; if not, continue.

a. Suppose that the eavesdropper uses the above algorithm and has a computer
that can carry out in 1 microsecond (1 millionth of a second) a division
between two integers of up to 100 bits each. Give an estimate of the time
that it will take in the worst case to decipher the secret message if r has
100 bits.

b. What is the worst-case time complexity of the above algorithm? Since the
input to the algorithm is just one large number r, assume that the input size
n is the number of bytes needed to store r, that is, n = (log2 r)/8, and that
each division takes time O(n).

A-1.2 Program the three algorithms given in the chapter for the maximum subarray
problem, from Section 1.3, and perform a careful experimental analysis of their
running times. Plot their running times as a function of their input sizes as scatter
plots on both a linear-linear scale and a log-log scale. Choose representative
values of the size n, and run at least five tests for each size value n in your tests.
Note that the slope of a line plotted on a log-log scale is based on the exponent
of a function, since lognc = c logn.

A-1.3 Implement an extendable table using arrays that can increase in size as elements
are added. Perform an experimental analysis of each of the running times for
performing a sequence of n add methods, assuming the array size is increased
from N to the following possible values:

a. 2N
b. N + ⌈

√
N⌉

c. N + ⌈logN⌉
d. N + 100.

A-1.4 An evil king has a cellar containing n bottles of expensive wine, and his guards
have just caught a spy trying to poison the king’s wine. Fortunately, the guards
caught the spy after he succeeded in poisoning only one bottle. Unfortunately,
they don’t know which one. To make matters worse, the poison the spy used was



1.5. Exercises 49

very deadly; just one drop diluted even a billion to one will still kill someone.
Even so, the poison works slowly; it takes a full month for the person to die.
Design a scheme that allows the evil king to determine exactly which one of
his wine bottles was poisoned in just one month’s time while expending at most
O(log n) of his taste testers.

Note: All the remaining problems are inspired by questions reported to have been
asked in job interviews for major software and Internet companies.

A-1.5 Suppose you are given a set of small boxes, numbered 1 to n, identical in every
respect except that each of the first i contain a pearl whereas the remaining n− i
are empty. You also have two magic wands that can each test whether a box
is empty or not in a single touch, except that a wand disappears if you test it
on an empty box. Show that, without knowing the value of i, you can use the
two wands to determine all the boxes containing pearls using at most o(n) wand
touches. Express, as a function of n, the asymptotic number of wand touches
needed.

A-1.6 Repeat the previous problem assuming that you now have k magic wands, with
k > 2 and k < log n. Express, as a function of n and k, the asymptotic number
of wand touches needed to identify all the magic boxes containing pearls.

A-1.7 Suppose you are given an integer c and an array, A, indexed from 1 to n, of n
integers in the range from 1 to 5n (possibly with duplicates). Describe an efficient
algorithm for determining if there are two integers, A[i] and A[j], in A that sum
to c, that is, such that c = A[i] + A[j], for 1 ≤ i < j ≤ n. What is the running
time of your algorithm?

A-1.8 Given an array, A, describe an efficient algorithm for reversing A. For example,
if A = [3, 4, 1, 5], then its reversal is A = [5, 1, 4, 3]. You can only use O(1)
memory in addition to that used by A itself. What is the running time of your
algorithm?

A-1.9 Given a string, S, of n digits in the range from 0 to 9, describe an efficient
algorithm for converting S into the integer it represents. What is the running
time of your algorithm?

A-1.10 Given an array, A, of n integers, find the longest subarray of A such that all the
numbers in that subarray are in sorted order. What is the running time of your
method?

A-1.11 Given an array, A, of n positive integers, each of which appears in A exactly
twice, except for one integer, x, describe an O(n)-time method for finding x
using only a single variable besides A.

A-1.12 Given an array, A, of n− 2 unique integers in the range from 1 to n, describe an
O(n)-time method for finding the two integers in the range from 1 to n that are
not in A. You may use only O(1) space in addition to the space used by A.

A-1.13 Suppose you are writing a simulator for a single-elimination sports tournament
(like in NCAA Division-1 basketball). There are n teams at the beginning of
the tournament and in each round of the tournament teams are paired up and the
games for each pair are simulated. Winners progress to the next round and losers
are sent home. This continues until a grand champion team is the final winner.



50 Chapter 1. Algorithm Analysis

Suppose your simulator takes O(log n) time to process each game. How much
time does your simulator take in total?

A-1.14 Suppose you are given an array, A, of n positive integers. Describe an O(n)
algorithm for removing all the even numbers from A. That is, if A has m odd
numbers, then, after you are done, these odd numbers should occupy the first m
cells of A in the same relative order they were in originally.

A-1.15 Given an integer k > 0 and an array, A, of n bits, describe an efficient algorithm
for finding the shortest subarray of A that contains k 1’s. What is the running
time of your method?

A-1.16 A certain town has exactly n married heterosexual couples. Every wife knows
whether every other wife’s husband is cheating on his wife or not, but no wife
knows if her own husband is cheating or not. In fact, if a wife ever learns that
her husband is cheating on her, then she will poison him that very night. So no
husband will ever confess that he is cheating. One day, the mayor (who is not
married) announces that there is at least one cheating husband in the town. What
happens next?

A-1.17 Imagine that a magician has just given you a biased coin. It looks just like a
normal coin, with a “heads” side and a “tails” side, but each time this coin is
flipped, it is more likely to come up heads than tails. How can you use this coin
to generate an unbiased sequence of independent random bits, that is, a random
sequence of 0’s and 1’s where each bit has an independent equal probability of
being a 0 or 1?

A-1.18 Suppose you are processing a stream of bytes, one at a time, but you don’t know
in advance how many there will be, as the last byte is a special EOF character.
You only get to consider each byte once. Describe a scheme for choosing a byte
in this stream at random so that every byte in the stream has an equal chance of
being chosen. You may use only an O(1) amount of space.

Chapter Notes

The big-Oh notation has prompted several discussions over its proper use [36, 95, 128].
Knuth [129, 128], for example, defines it using the notation f(n) = O(g(n)), but refers
to this “equality” as being only “one way.” We have chosen to take a more standard view
of equality and view the big-Oh notation as a set, following Brassard [36]. The linear-
time algorithm we gave for the maximum subarray problem is due to Kadane [26]. For
more information on amortization, please see Tarjan [207, 208]. We include a number of
useful mathematical facts in Appendix A. The reader interested in further study into the
analysis of algorithms is referred to the books by Graham, Knuth, and Patashnik [93], and
Sedgewick and Flajolet [190]. Finally, for more information about using experimentation
to estimate the running time of algorithms, we refer the interested reader to papers by
McGeoch and coauthors [151, 152, 153].


