
© 2015 Goodrich and Tamassia AVL Trees 1

AVL Trees
6

3 8

4

v

z

Presentation for use with the textbook Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

© 2015 Goodrich and Tamassia AVL Trees 2

AVL Tree Definition
AVL trees are rank-
balanced trees.
The rank, r(v), of each
node, v, is its height.
Rank-balance rule:
An AVL Tree is a binary
search tree such that for
every internal node v of
T, the heights (ranks) of
the children of v can
differ by at most 1.

88

44

17 78

32 50

48 62

2

4

1

1

2

3

1

1

An example of an AVL tree where the
ranks are shown next to the nodes

© 2015 Goodrich and Tamassia AVL Trees 3

Height of an AVL Tree
Fact: The height of an AVL tree storing n keys is O(log n).
Proof (by induction): Let us bound n(h): the minimum number
of internal nodes of an AVL tree of height h.

We easily see that n(1) = 1 and n(2) = 2
For n > 2, an AVL tree of height h contains the root node,
one AVL subtree of height n-1 and another of height n-2.
That is, n(h) = 1 + n(h-1) + n(h-2)
Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So
n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), … (by induction),
n(h) > 2in(h-2i)

Solving the base case we get: n(h) > 2 h/2-1

Taking logarithms: h < 2log n(h) +2
Thus the height of an AVL tree is O(log n)

3

4 n(1)

n(2)

© 2015 Goodrich and Tamassia AVL Trees 4

Insertion
Insertion is as in a binary search tree
Always done by expanding an external node.
Example:

44

17 78

32 50 88

48 62

54
w

b=x

a=y

c=z

44

17 78

32 50 88

48 62

before insertion

after insertion

© 2015 Goodrich and Tamassia AVL Trees 5

Trinode Restructuring
Let (a,b,c) be the inorder listing of x, y, z
Perform the rotations needed to make b the topmost node of the three

b=y

a=z

c=x
T0

T1

T2 T3

b=y

a=z c=x

T0 T1 T2 T3

c=y

b=x

a=z

T0

T1 T2

T3 b=x

c=y a=z

T0 T1 T2 T3

Double rotation around
c and a

Single rotation
around b

© 2015 Goodrich and Tamassia AVL Trees 6

Insertion Example, continued

88

44

17 78

32 50

48 62

2

5

1

1

3

4

2

1

54

1

T0 T2

T3

x

y

z

2

3

4

5

6
7

1

The image cannot be
displayed. Your computer
may not have enough
memory to open the
image, or the image may
have been corrupted.
Restart your computer, and
then open the file again. If
the red x still appears, you
may have to delete the
image and then insert it
again.

88

44

17
78 32 50

48

62
2

4

1
1

2 2

3

1
54
1

T 0 T 1

T 2

T 3

x
y z

unbalanced...

...balanced
1

2
3

4

5

6

7

T 1

© 2015 Goodrich and Tamassia AVL Trees 7

Restructuring (as Single Rotations)
  Single Rotations:

T0
T1

T2
T3

c = x
b = y

a = z

T0 T1 T2
T3

c = x
b = y

a = z
single rotation

T3
T2

T1
T0

a = x
b = y

c = z

T0T1T2
T3

a = x
b = y

c = z
single rotation

© 2015 Goodrich and Tamassia AVL Trees 8

Restructuring (as Double Rotations)
double rotations:

double rotationa = z

b = x
c = y

T0
T2

T1
T3 T0

T2
T3T1

a = z
b = x

c = y

double rotationc = z

b = x
a = y

T0
T2

T1
T3 T0

T2
T3 T1

c = z
b = x

a = y

© 2015 Goodrich and Tamassia

Pseudo-code
Insertion.

AVL Trees 9

© 2015 Goodrich and Tamassia

Pseudo-code
Rebalance at a node violating the rank rule.

AVL Trees 10

© 2015 Goodrich and Tamassia AVL Trees 11

Removal
Removal begins as in a binary search tree, which means the node
removed will become an empty external node. Its parent, w, may
cause an imbalance.
Example:

44

17

78 32 50

88 48

62

54

44

17

78 50

88 48

62

54

before deletion of 32 after deletion

© 2015 Goodrich and Tamassia AVL Trees 12

Rebalancing after a Removal
Let z be the first unbalanced node encountered while travelling up the tree
from w. Also, let y be the child of z with the larger height, and let x be the
child of y with the larger height
We perform a trinode restructuring to restore balance at z
As this restructuring may upset the balance of another node higher in the
tree, we must continue checking for balance until the root of T is reached

44

17

78 50

88 48

62

54

w

c=x

b=y

a=z

44

17

78

50 88

48

62

54

© 2015 Goodrich and Tamassia

Pseudo-code
Removal

AVL Trees 13

© 2015 Goodrich and Tamassia AVL Trees 14

AVL Tree Performance
AVL tree storing n items
n  The data structure uses O(n) space

n  A single restructuring takes O(1) time
w  using a linked-structure binary tree

n  Searching takes O(log n) time
w  height of tree is O(log n), no restructures needed

n  Insertion takes O(log n) time
w  initial find is O(log n)
w  restructuring up the tree, maintaining heights is O(log n)

n  Removal takes O(log n) time
w  initial find is O(log n)
w  restructuring up the tree, maintaining heights is O(log n)

