Presentation for use with the textbook Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

AVL Trees

AVL Tree Definition

- AVL trees are rankbalanced trees.
- The rank, $r(v)$, of each node, v, is its height.
- Rank-balance rule:

An AVL Tree is a binary search tree such that for every internal node vof T , the heights (ranks) of the children of v can differ by at most 1 .

An example of an AVL tree where the ranks are shown next to the nodes

Height of an AVL Tree

Fact: The height of an AVL tree storing n keys is $\mathrm{O}(\log \mathrm{n})$.
Proof (by induction): Let us bound $n(h)$: the minimum number of internal nodes of an AVL tree of height h.

- We easily see that $n(1)=1$ and $n(2)=2$
- For $n>2$, an AVL tree of height h contains the root node, one AVL subtree of height $\mathrm{n}-1$ and another of height $\mathrm{n}-2$.
- That is, $\mathrm{n}(\mathrm{h})=1+\mathrm{n}(\mathrm{h}-1)+\mathrm{n}(\mathrm{h}-2)$
- Knowing $n(h-1)>n(h-2)$, we get $n(h)>2 n(h-2)$. So $n(h)>2 n(h-2), n(h)>4 n(h-4), n(h)>8 n(n-6), \ldots$ (by induction), $n(h)>2 i n(h-2 i)$
- Solving the base case we get: $n(h)>2^{h / 2-1}$
- Taking logarithms: $\mathrm{h}<2 \log \mathrm{n}(\mathrm{h})+2$
- Thus the height of an AVL tree is $\mathrm{O}(\log n)$

Insertion

- Insertion is as in a binary search tree
- Always done by expanding an external node.
- Example:

before insertion

after insertion

Trinode Restructuring

- Let (a, b, c) be the inorder listing of x, y, z
- Perform the rotations needed to make b the topmost node of the three

Insertion Example, continued

Restructuring (as Single Rotations)

- Single Rotations:

(C) 2015 Goodrich ${ }^{T}$ ahd Tamassia

AVL Trees

Restructuring (as Double Rotations)

- double rotations:

Pseudo-code

- Insertion.

Algorithm insertAVL (k, e, T) :
Input: A key-element pair, (k, e), and an AVL tree, T
Output: An update of T to now contain the item (k, e)
$v \leftarrow$ IterativeTreeSearch (k, T)
if v is not an external node then return "An item with key k is already in T "
Expand v into an internal node with two external-node children v.key $\leftarrow k$
v.element $\leftarrow e$
v.height $\leftarrow 1$
rebalanceAVL (v, T)

Pseudo-code

- Rebalance at a node violating the rank rule.

Algorithm rebalanceAVL (v, T) :

Input: A node, v, where an imbalance may have occurred in an AVL tree, T Output: An update of T to now be balanced
v.height $\leftarrow 1+\max \{v$.leftChild().height, v.rightChild(() .height $\}$
while v is not the root of T do
$v \leftarrow v$.parent()
if $\mid v$.leftChild () .height $-v$. right C hild () .height $\mid>1$ then
Let y be the tallest child of v and let x be the tallest child of y
$v \leftarrow$ restructure $(x) \quad / /$ trinode restructure operation
v.height $\leftarrow 1+\max \{v$.leftChild () .height, v.rightChild($)$.height $\}$

Removal

- Removal begins as in a binary search tree, which means the node removed will become an empty external node. Its parent, w, may cause an imbalance.
- Example:

before deletion of 32
after deletion

Rebalancing after a Removal

- Let z be the first unbalanced node encountered while travelling up the tree from w. Also, let y be the child of z with the larger height, and let x be the child of y with the larger height
- We perform a trinode restructuring to restore balance at z
- As this restructuring may upset the balance of another node higher in the tree, we must continue checking for balance until the root of T is reached

Pseudo-code

- Removal

Algorithm removeAVL (k, T) :
Input: A key, k, and an AVL tree, T
Output: An update of T to now have an item (k, e) removed $v \leftarrow$ IterativeTreeSearch (k, T)
if v is an external node then
return "There is no item with key k in T "
if v has no external-node child then
Let u be the node in T with key nearest to k
Move u 's key-value pair to v
$v \leftarrow u$
Let w be v 's smallest-height child
Remove w and v from T, replacing v with w 's sibling, z rebalanceAVL (z, T)

AVL Tree Performance

- AVL tree storing n items
- The data structure uses O(n) space
- A single restructuring takes $O(1)$ time
- using a linked-structure binary tree
- Searching takes $O(\log n)$ time
- height of tree is $\mathrm{O}(\log n)$, no restructures needed
- Insertion takes $O(\log n)$ time
- initial find is $\mathrm{O}(\log \mathrm{n})$
- restructuring up the tree, maintaining heights is $\mathrm{O}(\log \mathrm{n})$
- Removal takes O(logn) time
- initial find is $\mathrm{O}(\log n)$
- restructuring up the tree, maintaining heights is $\mathrm{O}(\log n)$

