Presentation for use with the textbook Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

AVL Trees

/N

© 2015 Goodrich and Tamassia AVL Trees

N

AVL Tree Definition

@ AVL trees are rank-
balanced trees.

The rank, r(v), of each
node, v, is its height.

¥ Rank-balance rule:

An AVL Tree is a binary
search tree such that for

every internal node v of
T, the heights (ranks) of
the children of v can
differ by at most 1.

An example of an AVL tree where the
ranks are shown next to the nodes

© 2015 Goodrich and Tamassia AVL Trees 2

n(zz/\\\
: /0 @)
Height of an AVL Tree . z\

N

Fact: The height of an AVL tree storing n keys is O(log n).
Proof (by induction): Let us bound n(h): the minimum number
of internal nodes of an AVL tree of height h.
@® We easily see that n(1) =1 and n(2) = 2

@ For n > 2, an AVL tree of height h contains the root node,
one AVL subtree of height n-1 and another of height n-2.

@ Thatis, n(h) =1 + n(h-1) + n(h-2)

@ Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So
n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), ... (by induction),
n(h) > 2in(h-2i)

@ Solving the base case we get: n(h) > 2 21

@ Taking logarithms: h < 2log n(h) +2

@ Thus the height of an AVL tree is O(log n)

© 2015 Goodrich and Tamassia AVL Trees 3

Insertion

N

" @ Insertion is as in a binary search tree
@ Always done by expanding an external node.
@ Example:

before insertion

after insertion

© 2015 Goodrich and Tamassia AVL Trees

Trinode Restructuring

@ Let (g,b,¢) be the inorder listing of x, y, z

N

Single rotation
around b

@ Perform the rotations needed to make b the topmost node of the three

Double rotation around

© 2015 Goodrich and Tamassia AVL Trees

Insertion Example, continued

5

unbalanced... “-----

...balanced

© 2015 Goodrich and Tamassia AVL Trees 6

Restructuring (as Single Rotations)
Single Rotations:

T
© 2015 Goodrich ahd Tamassia AVL Trees 7

Restructuring (as Double Rotations)

double rotations:

© 2015 Goodrich and Tamassia AVL Trees 8

Pseudo-code

N

Insertion.

Algorithm insertAVL(k, e, T):
Input: A key-element pair, (k, e), and an AVL tree, T’
Output: An update of 7" to now contain the item (k, €)

v < lterativeTreeSearch(k, T')
if v is not an external node then
return “An item with key k£ is already in 7"
Expand v into an internal node with two external-node children
v.key < k
v.element < e
v.height « 1
rebalanceAVL (v, T)

© 2015 Goodrich and Tamassia AVL Trees

Pseudo-code

N

Rebalance at a node violating the rank rule.

Algorithm rebalanceAVL (v, T'):

Input: A node, v, where an imbalance may have occurred in an AVL tree, T'
Output: An update of T to now be balanced

v.height «— 1 4+ max{v.leftChild().height, v.rightChild().height}
while v is not the root of 7" do
v < v.parent()
if |v.leftChild().height — v.rightChild().height| > 1 then
Let y be the tallest child of v and let x be the tallest child of ¥
v < restructure(z) // trinode restructure operation
v.height <— 1 4+ max{v.leftChild().height, v.rightChild().height}

© 2015 Goodrich and Tamassia AVL Trees 10

N

Removal

4 Removal begins as in a binary search tree, which means the node
removed will become an empty external node. Its parent, w, may
cause an imbalance.

® Example:

before deletion of 32 after deletion

© 2015 Goodrich and Tamassia AVL Trees 11

N

Rebalancing after a Removal

@ Let z be the first unbalanced node encountered while travelling up the tree
from w. Also, let y be the child of z with the larger height, and let x be the

child of y with the larger height
#® We perform a trinode restructuring to restore balance at z

@ As this restructuring may upset the balance of another node higher in the
tree, we must continue checking for balance until the root of T is reached

© 2015 Goodrich and Tamassia AVL Trees 12

Pseudo-code

N

€ Removal

Algorithm removeAVL(k,T'):
Input: A key, k, and an AVL tree, T’
Output: An update of 7" to now have an item (k, ¢) removed

v < lterativeTreeSearch(k,T)
if v is an external node then
return “There is no item with key &k in 7
if v has no external-node child then
Let u be the node in 7" with key nearest to k
Move u’s key-value pair to v
V< u
Let w be v’s smallest-height child

Remove w and v from T, replacing v with w’s sibling, z
rebalanceAVL(z, T)

© 2015 Goodrich and Tamassia AVL Trees 13

JAVL Tree Performance

N

@ AVL tree storing n items
= [he data structure uses O(n) space

= A single restructuring takes O(1) time
+ using a linked-structure binary tree
= Searching takes O(log n) time
+ height of tree is O(log n), no restructures needed
= Insertion takes O(log n) time
+ initial find is O(log n)
+ restructuring up the tree, maintaining heights is O(log n)
= Removal takes O(log n) time
+ initial find is O(log n)
+ restructuring up the tree, maintaining heights is O(log n)

© 2015 Goodrich and Tamassia AVL Trees 14

