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Presentation for use with the textbook Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 
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AVL Tree Definition 
AVL trees are rank-
balanced trees. 
The rank, r(v), of each 
node, v, is its height. 
Rank-balance rule: 
An AVL Tree is a binary 
search tree such that for 
every internal node v of 
T, the heights (ranks) of 
the children of v can 
differ by at most 1. 
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An example of an AVL tree where the 
ranks are shown next to the nodes 
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Height of an AVL Tree 
Fact: The height of an AVL tree storing n keys is O(log n). 
Proof (by induction): Let us bound n(h): the minimum number 
of internal nodes of an AVL tree of height h. 

We easily see that n(1) = 1 and n(2) = 2 
For n > 2, an AVL tree of height h contains the root node, 
one AVL subtree of height n-1 and another of height n-2. 
That is, n(h) = 1 + n(h-1) + n(h-2) 
Knowing n(h-1) > n(h-2), we get n(h) > 2n(h-2). So 
n(h) > 2n(h-2), n(h) > 4n(h-4), n(h) > 8n(n-6), … (by induction), 
n(h) > 2in(h-2i) 

Solving the base case we get: n(h) > 2 h/2-1 

Taking logarithms: h < 2log n(h) +2 
Thus the height of an AVL tree is O(log n) 
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Insertion 
Insertion is as in a binary search tree 
Always done by expanding an external node. 
Example: 
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Trinode Restructuring 
Let (a,b,c) be the inorder listing of x, y, z 
Perform the rotations needed to make b the topmost node of the three 
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Insertion Example, continued 
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The image cannot be 
displayed. Your computer 
may not have enough 
memory to open the 
image, or the image may 
have been corrupted. 
Restart your computer, and 
then open the file again. If 
the red x still appears, you 
may have to delete the 
image and then insert it 
again.
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Restructuring (as Single Rotations) 
  Single Rotations: 
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Restructuring (as Double Rotations) 
double rotations: 

double rotationa = z

b = x
c = y
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Pseudo-code 
Insertion. 
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Pseudo-code 
Rebalance at a node violating the rank rule. 
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Removal 
Removal begins as in a binary search tree, which means the node 
removed will become an empty external node. Its parent, w, may 
cause an imbalance. 
Example:  
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Rebalancing after a Removal 
Let z be the first unbalanced node encountered while travelling up the tree 
from w. Also, let y be the child of z with the larger height, and let x be the 
child of y with the larger height 
We perform a trinode restructuring to restore balance at z 
As this restructuring may upset the balance of another node higher in the 
tree, we must continue checking for balance until the root of T is reached 
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Pseudo-code 
Removal 
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AVL Tree Performance 
AVL tree storing n items 
n  The data structure uses O(n) space 

n  A single restructuring takes O(1) time 
w  using a linked-structure binary tree 

n  Searching takes O(log n) time 
w  height of tree is O(log n), no restructures needed 

n  Insertion takes O(log n) time 
w  initial find is O(log n) 
w  restructuring up the tree, maintaining heights is O(log n) 

n  Removal takes O(log n) time 
w  initial find is O(log n) 
w  restructuring up the tree, maintaining heights is O(log n) 


