Analysis of Algorithms
Scalability

- Scientists often have to deal with differences in scale, from the microscopically small to the astronomically large.
- Computer scientists must also deal with scale, but they deal with it primarily in terms of data volume rather than physical object size.
- **Scalability** refers to the ability of a system to gracefully accommodate growing sizes of inputs or amounts of workload.
Application: Job Interviews

- High technology companies tend to ask questions about **algorithms and data structures** during job interviews.
- Algorithms questions can be short but often require critical thinking, creative insights, and subject knowledge.
 - All the “Applications” exercises in Chapter 1 of the Goodrich-Tamassia textbook are taken from reports of actual job interview questions.

Used with permission under Creative Commons 2.5 License.
Algorithms and Data Structures

- An **algorithm** is a step-by-step procedure for performing some task in a finite amount of time.
 - Typically, an algorithm takes input data and produces an output based upon it.

- A **data structure** is a systematic way of organizing and accessing data.
Running Time

- Most algorithms transform input objects into output objects.
- The running time of an algorithm typically grows with the input size.
- Average case time is often difficult to determine.
- We focus primarily on the **worst case running time**.
 - Easier to analyze
 - Crucial to applications such as games, finance and robotics
Experimental Studies

- Write a program implementing the algorithm
- Run the program with inputs of varying size and composition, noting the time needed:
- Plot the results
Limitations of Experiments

- It is necessary to implement the algorithm, which may be difficult.
- Results may not be indicative of the running time on other inputs not included in the experiment.
- In order to compare two algorithms, the same hardware and software environments must be used.
Theoretical Analysis

- Uses a high-level description of the algorithm instead of an implementation
- Characterizes running time as a function of the input size, n
- Takes into account all possible inputs
- Allows us to evaluate the speed of an algorithm independent of the hardware/software environment
Pseudocode

- High-level description of an algorithm
- More structured than English prose
- Less detailed than a program
- Preferred notation for describing algorithms
- Hides program design issues
Pseudocode Details

- **Control flow**
 - if ... then ... [else ...]
 - while ... do ...
 - repeat ... until ...
 - for ... do ...
 - Indentation replaces braces

- **Method declaration**

 Algorithm `method (arg [, arg...])`

 Input ...

 Output ...

- **Method call**

 `method (arg [, arg...])`

- **Return value**

 `return expression`

- **Expressions:**

 ← Assignment

 = Equality testing

 n^2 Superscripts and other mathematical formatting allowed

© 2015 Goodrich and Tamassia
The Random Access Machine (RAM) Model

A **RAM** consists of

- A CPU
- An potentially unbounded bank of memory cells, each of which can hold an arbitrary number or character
- Memory cells are numbered and accessing any cell in memory takes unit time
Seven Important Functions

- Seven functions that often appear in algorithm analysis:
 - Constant ≈ 1
 - Logarithmic ≈ log n
 - Linear ≈ n
 - N-Log-N ≈ $n \log n$
 - Quadratic ≈ n^2
 - Cubic ≈ n^3
 - Exponential ≈ 2^n

- In a log-log chart, the slope of the line corresponds to the growth rate.

© 2015 Goodrich and Tamassia
Functions Graphed Using “Normal” Scale

- \(g(n) = 1 \)
- \(g(n) = n \log n \)
- \(g(n) = 2^n \)
- \(g(n) = \log n \)
- \(g(n) = n^2 \)
- \(g(n) = n^3 \)

© 2015 Goodrich and Tamassia
Primitive Operations

- Basic computations performed by an algorithm
- Identifiable in pseudocode
- Largely independent from the programming language
- Exact definition not important (we will see why later)
- Assumed to take a constant amount of time in the RAM model

Examples:
- Evaluating an expression
- Assigning a value to a variable
- Indexing into an array
- Calling a method
- Returning from a method
Counting Primitive Operations

Example: By inspecting the pseudocode, we can determine the maximum number of primitive operations executed by an algorithm, as a function of the input size.

Algorithm arrayMax(A, n):
 \textbf{Input:} An array A storing \(n \geq 1 \) integers.
 \textbf{Output:} The maximum element in A.
 currentMax \leftarrow A[0]
 \textbf{for } i \leftarrow 1 \textbf{ to } n - 1 \textbf{ do}
 \textbf{if } currentMax < A[i] \textbf{ then}
 currentMax \leftarrow A[i]
 \textbf{return} currentMax
Estimating Running Time

- Algorithm \texttt{arrayMax} executes $7n - 2$ primitive operations in the worst case, $5n$ in the best case.

Define:

- $a =$ Time taken by the fastest primitive operation
- $b =$ Time taken by the slowest primitive operation

- Let $T(n)$ be worst-case time of \texttt{arrayMax}. Then
 \[a(5n) \leq T(n) \leq b(7n - 2) \]

- Hence, the running time $T(n)$ is bounded by two linear functions
Growth Rate of Running Time

- Changing the hardware/software environment
 - Affects $T(n)$ by a constant factor, but
 - Does not alter the growth rate of $T(n)$

- The linear growth rate of the running time $T(n)$ is an intrinsic property of algorithm arrayMax
Why Growth Rate Matters

<table>
<thead>
<tr>
<th>if runtime is...</th>
<th>time for $n + 1$</th>
<th>time for $2n$</th>
<th>time for $4n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$c \lg n$</td>
<td>$c \lg (n + 1)$</td>
<td>$c (\lg n + 1)$</td>
<td>$c(\lg n + 2)$</td>
</tr>
<tr>
<td>$c n$</td>
<td>$c (n + 1)$</td>
<td>$2c n$</td>
<td>$4c n$</td>
</tr>
<tr>
<td>$c n \lg n$</td>
<td>$\sim c n \lg n + c n$</td>
<td>$2c n \lg n + 2cn$</td>
<td>$4c n \lg n + 4cn$</td>
</tr>
<tr>
<td>$c n^2$</td>
<td>$\sim c n^2 + 2c n$</td>
<td>$4c n^2$</td>
<td>$16c n^2$</td>
</tr>
<tr>
<td>$c n^3$</td>
<td>$\sim c n^3 + 3c n^2$</td>
<td>$8c n^3$</td>
<td>$64c n^3$</td>
</tr>
<tr>
<td>$c 2^n$</td>
<td>$c 2^{n+1}$</td>
<td>$c 2^{2n}$</td>
<td>$c 2^{4n}$</td>
</tr>
</tbody>
</table>

Runtime quadruples when problem size doubles.
Analyzing Recursive Algorithms

- Use a function, $T(n)$, to derive a **recurrence relation** that characterizes the running time of the algorithm in terms of smaller values of n.

```
Algorithm recursiveMax(A, n):
    Input: An array A storing $n \geq 1$ integers.
    Output: The maximum element in A.
    if $n = 1$ then
        return $A[0]$
    return $\max\{\text{recursiveMax}(A, n - 1), A[n - 1]\}$
```

$$T(n) = \begin{cases}
3 & \text{if } n = 1 \\
T(n - 1) + 7 & \text{otherwise},
\end{cases}$$
Constant Factors

- The growth rate is minimally affected by constant factors or lower-order terms.

- Examples
 - $10^2n + 10^5$ is a linear function.
 - $10^5n^2 + 10^8n$ is a quadratic function.
Big-Oh Notation

- Given functions \(f(n) \) and \(g(n) \), we say that \(f(n) \) is \(O(g(n)) \) if there are positive constants \(c \) and \(n_0 \) such that \(f(n) \leq cg(n) \) for \(n \geq n_0 \).

- Example: \(2n + 10 \) is \(O(n) \)
 - \(2n + 10 \leq cn \)
 - \((c - 2) n \geq 10 \)
 - \(n \geq 10/(c - 2) \)
 - Pick \(c = 3 \) and \(n_0 = 10 \)
Example: the function \(n^2 \) is not \(O(n) \)

- \(n^2 \leq cn \)
- \(n \leq c \)
- The above inequality cannot be satisfied since \(c \) must be a constant
More Big-Oh Examples

- **7n - 2**

 $7n - 2$ is $O(n)$

 need $c > 0$ and $n_0 \geq 1$ such that $7n - 2 \leq cn$ for $n \geq n_0$

 this is true for $c = 7$ and $n_0 = 1$

- **$3n^3 + 20n^2 + 5$**

 $3n^3 + 20n^2 + 5$ is $O(n^3)$

 need $c > 0$ and $n_0 \geq 1$ such that $3n^3 + 20n^2 + 5 \leq cn^3$ for $n \geq n_0$

 this is true for $c = 4$ and $n_0 = 21$

- **$3\log n + 5$**

 $3\log n + 5$ is $O(\log n)$

 need $c > 0$ and $n_0 \geq 1$ such that $3\log n + 5 \leq c\log n$ for $n \geq n_0$

 this is true for $c = 8$ and $n_0 = 2$
Big-Oh and Growth Rate

- The big-Oh notation gives an upper bound on the growth rate of a function.
- The statement “$f(n)$ is $O(g(n))$” means that the growth rate of $f(n)$ is no more than the growth rate of $g(n)$.
- We can use the big-Oh notation to rank functions according to their growth rate.

<table>
<thead>
<tr>
<th></th>
<th>$f(n)$ is $O(g(n))$</th>
<th>$g(n)$ is $O(f(n))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$g(n)$ grows more</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>$f(n)$ grows more</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Same growth</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Big-Oh Rules

- If $f(n)$ is a polynomial of degree d, then $f(n)$ is $O(n^d)$, i.e.,
 1. Drop lower-order terms
 2. Drop constant factors
- Use the smallest possible class of functions
 - Say “$2n$ is $O(n)$” instead of “$2n$ is $O(n^2)$”
- Use the simplest expression of the class
 - Say “$3n + 5$ is $O(n)$” instead of “$3n + 5$ is $O(3n)$”
The asymptotic analysis of an algorithm determines the running time in big-Oh notation.

To perform the asymptotic analysis:
- We find the worst-case number of primitive operations executed as a function of the input size.
- We express this function with big-Oh notation.

Example:
- We say that algorithm arrayMax “runs in $O(n)$ time”.

Since constant factors and lower-order terms are eventually dropped anyhow, we can disregard them when counting primitive operations.
A Case Study in Algorithm Analysis

- Given an array of n integers, find the subarray, $A[j:k]$ that maximizes the sum

$$s_{j,k} = a_j + a_{j+1} + \cdots + a_k = \sum_{i=j}^{k} a_i.$$

- In addition to being an interview question for testing the thinking skills of job candidates, this maximum subarray problem also has applications in pattern analysis in digitized images.
A First (Slow) Solution

Compute the maximum of every possible subarray summation of the array A separately.

- The outer loop, for index j, will iterate n times, its inner loop, for index k, will iterate at most n times, and the inner-most loop, for index i, will iterate at most n times.
- Thus, the running time of the MaxsubSlow algorithm is $O(n^3)$.
An Improved Algorithm

- A more efficient way to calculate these summations is to consider **prefix sums**

\[S_t = a_1 + a_2 + \cdots + a_t = \sum_{i=1}^{t} a_i \]

- If we are given all such prefix sums (and assuming \(S_0 = 0 \)), we can compute any summation \(s_{j,k} \) in constant time as

\[s_{j,k} = S_k - S_{j-1} \]
An Improved Algorithm, cont.

- Compute all the prefix sums
- Then compute all the subarray sums

Algorithm `MaxSubFaster(A)`:
Input: An n-element array A of numbers, indexed from 1 to n.
Output: The maximum subarray sum of array A.

1. $S_0 \leftarrow 0$ // the initial prefix sum
2. for $i \leftarrow 1$ to n do
 1. $S_i \leftarrow S_{i-1} + A[i]$
3. $m \leftarrow 0$ // the maximum found so far
4. for $j \leftarrow 1$ to n do
 1. for $k \leftarrow j$ to n do
 1. $s = S_k - S_{j-1}$
 2. if $s > m$ then
 1. $m \leftarrow s$
5. return m
Arithmetic Progression

- The running time of MaxsubFaster is $O(1 + 2 + \ldots + n)$
- The sum of the first n integers is $n(n + 1)/2$
 - There is a simple visual proof of this fact
- Thus, algorithm MaxsubFaster runs in $O(n^2)$ time
A Linear-Time Algorithm

- Instead of computing prefix sum $S_t = s_{1,t}$, let us compute a maximum suffix sum, M_t, which is the maximum of 0 and the maximum $s_{j,t}$ for $j = 1, \ldots, t$.

$$M_t = \max\{0, \max_{j=1,\ldots,t} \{s_{j,t}\}\}$$

- if $M_t > 0$, then it is the summation value for a maximum subarray that ends at t, and if $M_t = 0$, then we can safely ignore any subarray that ends at t.

- if we know all the M_t values, for $t = 1, 2, \ldots, n$, then the solution to the maximum subarray problem would simply be the maximum of all these values.
A Linear-Time Algorithm, cont.

- for $t \geq 2$, if we have a maximum subarray that ends at t, and it has a positive sum, then it is either $A[t : t]$ or it is made up of the maximum subarray that ends at $t - 1$ plus $A[t]$. So we can define $M_0 = 0$ and

$$M_t = \max\{0, M_{t-1} + A[t]\}$$

- If this were not the case, then we could make a subarray of even larger sum by swapping out the one we chose to end at $t - 1$ with the maximum one that ends at $t - 1$, which would contradict the fact that we have the maximum subarray that ends at t.

- Also, if taking the value of maximum subarray that ends at $t - 1$ and adding $A[t]$ makes this sum no longer be positive, then $M_t = 0$, for there is no subarray that ends at t with a positive summation.
The MaxsubFastest algorithm consists of two loops, which each iterate exactly n times and take O(1) time in each iteration. Thus, the total running time of the MaxsubFastest algorithm is O(n).
Math you need to Review

- Summations
- Powers
- Logarithms
- Proof techniques
- Basic probability

Properties of powers:
- $a^{(b+c)} = a^b a^c$
- $a^{bc} = (a^b)^c$
- $a^b / a^c = a^{(b-c)}$
- $b = a^{\log_a b}$
- $b^c = a^{c \log_a b}$

Properties of logarithms:
- $\log_b(xy) = \log_b x + \log_b y$
- $\log_b (x/y) = \log_b x - \log_b y$
- $\log_b xa = a \log_b x$
- $\log_b a = \log_x a / \log_x b$
Relatives of Big-Oh

big-Omega

- $f(n)$ is $\Omega(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that
 $$f(n) \geq c \cdot g(n) \text{ for } n \geq n_0$$

big-Theta

- $f(n)$ is $\Theta(g(n))$ if there are constants $c' > 0$ and $c'' > 0$ and an integer constant $n_0 \geq 1$ such that
 $$c'g(n) \leq f(n) \leq c''g(n) \text{ for } n \geq n_0$$
Intuition for Asymptotic Notation

big-Oh
- f(n) is $O(g(n))$ if f(n) is asymptotically less than or equal to g(n)

big-Omega
- f(n) is $\Omega(g(n))$ if f(n) is asymptotically greater than or equal to g(n)

big-Theta
- f(n) is $\Theta(g(n))$ if f(n) is asymptotically equal to g(n)
Example Uses of the Relatives of Big-Oh

- **$5n^2$ is $\Omega(n^2)$**

 $f(n)$ is $\Omega(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) \geq c \cdot g(n)$ for $n \geq n_0$

 let $c = 5$ and $n_0 = 1$

- **$5n^2$ is $\Omega(n)$**

 $f(n)$ is $\Omega(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) \geq c \cdot g(n)$ for $n \geq n_0$

 let $c = 1$ and $n_0 = 1$

- **$5n^2$ is $\Theta(n^2)$**

 $f(n)$ is $\Theta(g(n))$ if it is $\Omega(n^2)$ and $O(n^2)$. We have already seen the former, for the latter recall that $f(n)$ is $O(g(n))$ if there is a constant $c > 0$ and an integer constant $n_0 \geq 1$ such that $f(n) \leq c \cdot g(n)$ for $n \geq n_0$

 Let $c = 5$ and $n_0 = 1$
The amortized running time of an operation within a series of operations is the worst-case running time of the series of operations divided by the number of operations.

Example: A growable array, S. When needing to grow:

a. Allocate a new array B of larger capacity.
b. Copy A[i] to B[i], for i = 0, . . . , n – 1, where n is size of A.
c. Let A = B, that is, we use B as the array now supporting A.
Growable Array Description

- Let \text{add}(e) be the operation that adds element \(e\) at the end of the array.
- When the array is full, we replace the array with a larger one.
- But how large should the new array be?
 - Incremental strategy: increase the size by a constant \(c\).
 - Doubling strategy: double the size.

Algorithm \text{add}(e)

\[
\text{if } t = A.\text{length} - 1 \text{ then } \\
B \leftarrow \text{new array of size } \ldots \\
\text{for } i \leftarrow 0 \text{ to } n - 1 \text{ do } \\
B[i] \leftarrow A[i] \\
A \leftarrow B \\
n \leftarrow n + 1 \\
A[n - 1] \leftarrow e
\]
Comparison of the Strategies

- We compare the incremental strategy and the doubling strategy by analyzing the total time $T(n)$ needed to perform a series of n add operations.
- We assume that we start with an empty list represented by a growable array of size 1.
- We call amortized time of an add operation the average time taken by an add operation over the series of operations, i.e., $T(n)/n$.
Incremental Strategy Analysis

- Over n add operations, we replace the array $k = n/c$ times, where c is a constant.
- The total time $T(n)$ of a series of n add operations is proportional to

\[n + c + 2c + 3c + 4c + \ldots + kc = \]

\[n + c(1 + 2 + 3 + \ldots + k) = \]

\[n + ck(k + 1)/2 \]

- Since c is a constant, $T(n)$ is $O(n + k^2)$, i.e., $O(n^2)$.
- Thus, the amortized time of an add operation is $O(n)$.
Doubling Strategy Analysis

- We replace the array \(k = \log_2 n \) times.
- The total time \(T(n) \) of a series of \(n \) push operations is proportional to
 \[
 n + 1 + 2 + 4 + 8 + \ldots + 2^k = n + 2^{k+1} - 1 = 3n - 1
 \]
- \(T(n) \) is \(O(n) \)
- The amortized time of an add operation is \(O(1) \)
Accounting Method Proof for the Doubling Strategy

- We view the computer as a coin-operated appliance that requires the payment of 1 cyber-dollar for a constant amount of computing time.

- We shall charge each add operation 3 cyber-dollars, that is, it will have an amortized $O(1)$ amortized running time.
 - We over-charge each add operation not causing an overflow 2 cyber-dollars.
 - Think of the 2 cyber-dollars profited in an insertion that does not grow the array as being “stored” at the element inserted.
 - An overflow occurs when the array A has 2^i elements.
 - Thus, doubling the size of the array will require 2^i cyber-dollars.
 - These cyber-dollars are at the elements stored in cells 2^{i-1} through 2^i-1.