

Outline and Reading

Approximation Ratios

- Optimization Problems

- We have some problem instance x that has many feasible "solutions".
- We are trying to minimize (or maximize) some cost function $c(S)$ for a "solution" S to x. For example,
- Finding a minimum spanning tree of a graph
- Finding a smallest vertex cover of a graph
- Finding a smallest traveling salesperson tour in a graph
- An approximation produces a solution T
- T is a \mathbf{k}-approximation to the optimal solution OPT if $c(T) / c(O P T) \leq k$ (assuming a min. prob.; a maximization approximation would be the reverse) Approximation Algorithms

Polynomial-Time Approximation

 Schemes- A problem L has a polynomial-time approximation scheme (PTAS) if it has a polynomial-time ($1+\varepsilon$)-approximation algorithm, for any fixed $\varepsilon>0$ (this value can appear in the running time).
$0 / 1$ Knapsack has a PTAS, with a running time that is $\mathrm{O}\left(\mathrm{n}^{3} / \varepsilon\right)$. Please see $\S 13.4 .1$ in GoodrichTamassia for details.

A 2-Approximation for Vertex Cover

- Every chosen edge e has both ends in C
- But e must be covered by an optimal cover; hence, one end of e must be in OPT
- Thus, there is at most twice as many vertices in C as in OPT.
- That is, C is a 2-approx. of OPT
- Running time: $\mathrm{O}(\mathrm{m})$

Algorithm VertexCoverApprox(${ }^{(G)}$
Input graph G
Output a vertex cover C for G
$C \leftarrow$ empty set
$H \leftarrow G$
while H has edges
$e \leftarrow$ H.removeEdge(H.anEdge())
$v \leftarrow H$.origin(e)
$w \leftarrow H$.destination (e)
C.add(v)
C.add(w)
for each f incident to v or \boldsymbol{w}
H.removeEdge(f)
return C

Special Case of the Traveling Salesperson Problem

- OPT-TSP: Given a complete, weighted graph, find a cycle of minimum cost that visits each vertex.
- OPT-TSP is NP-hard
- Special case: edge weights satisfy the triangle inequality (which is common in many applications):
- $w(a, b)+w(b, c) \geq w(a, c)$

A 2-Approximation for TSP Special Case - Proof

- The optimal tour is a spanning tour; hence $|M| \leq|O P T|$.
- The Euler tour P visits each edge of M twice; hence $|P|=2|M|$
- Each time we shortcut a vertex in the Euler Tour we will not increase the total length, by the triangle inequality $(\mathrm{w}(\mathrm{a}, \mathrm{b})+\mathrm{w}(\mathrm{b}, \mathrm{c}) \geq \mathrm{w}(\mathrm{a}, \mathrm{c}))$; hence, $|\mathrm{T}| \leq|\mathrm{P}|$.
- Therefore, $|\mathrm{T}| \leq|\mathrm{P}|=2|\mathrm{M}| \leq 2|\mathrm{OPT}|$

Output tour T (at most the cost of P)

Euler tour P of MST M (twice the cost of M)

Optimal tour $O P T$ (at least the cost of MST M)

