Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Breadth-First Search

© 2015 Goodrich and Tamassia

Breadth-First Search

1

Breadth-First Search

- Breadth-first search (BFS) is a general technique for traversing a graph
- A BFS traversal of a graph G
 - Visits all the vertices and edges of G
 - Determines whether G is connected
 - Computes the connected components of G
 - Computes a spanning forest of G

BFS on a graph with *n* vertices and *m* edges takes O(n + m) time
 BFS can be further extended to solve other graph problems

- Find and report a path with the minimum number of edges between two given vertices
- Find a simple cycle, if there is one

BFS Algorithm

```
    The algorithm uses "levels" L<sub>i</sub> and a mechanism for setting and getting
"labels" of vertices and edges.
```

Algorithm BFS(G, s): *Input:* A graph G and a vertex s of G **Output:** A labeling of the edges in the connected component of s as discovery edges and cross edges Create an empty list, L_0 Mark s as explored and insert s into L_0 $i \leftarrow 0$ while L_i is not empty do create an empty list, L_{i+1} for each vertex, v, in L_i do for each edge, e = (v, w), incident on v in G do if edge e is unexplored then if vertex w is unexplored then Label *e* as a discovery edge Mark w as explored and insert w into L_{i+1} else Label e as a cross edge $i \leftarrow i + 1$

© 2015 Goodrich and Tamassia

© 2015 Goodrich and Tamassia

Properties

Notation G_s : connected component of s Property 1 BFS(G, s) visits all the vertices and edges of $G_{\rm s}$ Property 2 The discovery edges labeled by BFS(G, s) form a spanning tree T_s of G_{c} **Property 3** \boldsymbol{L}_1 For each vertex v in L_i The path of T_s from s to v has i edges

Every path from s to v in G_s has at least i edges

Analysis

- □ Setting/getting a vertex/edge label takes *O*(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- \Box Each vertex is inserted once into a sequence L_i
- Method incidentEdges is called once for each vertex
- BFS runs in O(n + m) time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_{v} \deg(v) = 2m$

Applications

- We can use the BFS traversal algorithm, for a graph *G*, to solve the following problems in *O*(*n* + *m*) time
 - Compute the connected components of *G*
 - Compute a spanning forest of G
 - Find a simple cycle in G, or report that G is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists

DFS vs. BFS

© 2015 Goodrich and Tamassia

DFS vs. BFS (cont.)

Back edge (v,w)

 w is an ancestor of v in the tree of discovery edges

Cross edge (v,w)

w is in the same level as
 v or in the next level

© 2015 Goodrich and Tamassia