Breadth-First Search
Breadth-First Search

- Breadth-first search (BFS) is a general technique for traversing a graph.
- A BFS traversal of a graph G:
 - Visits all the vertices and edges of G.
 - Determines whether G is connected.
 - Computes the connected components of G.
 - Computes a spanning forest of G.
- BFS on a graph with \(n \) vertices and \(m \) edges takes \(O(n + m) \) time.
- BFS can be further extended to solve other graph problems:
 - Find and report a path with the minimum number of edges between two given vertices.
 - Find a simple cycle, if there is one.
BFS Algorithm

- The algorithm uses “levels” L_i and a mechanism for setting and getting “labels” of vertices and edges.

Algorithm BFS(G, s):

- **Input**: A graph G and a vertex s of G
- **Output**: A labeling of the edges in the connected component of s as discovery edges and cross edges

Create an empty list, L_0
Mark s as explored and insert s into L_0

$i ← 0$

while L_i is not empty do

create an empty list, L_{i+1}

for each vertex, v, in L_i do

for each edge, $e = (v, w)$, incident on v in G do

if edge e is unexplored then

if vertex w is unexplored then

Label e as a discovery edge
Mark w as explored and insert w into L_{i+1}

else

Label e as a cross edge

$i ← i + 1$
Example

- **unexplored vertex**
- **visited vertex**
- **unexplored edge**
- **discovery edge**
- **cross edge**
Example (cont.)
Example (cont.)
Properties

Notation

\(G_s \): connected component of \(s \)

Property 1

\(BFS(G, s) \) visits all the vertices and edges of \(G_s \)

Property 2

The discovery edges labeled by \(BFS(G, s) \) form a spanning tree \(T_s \) of \(G_s \)

Property 3

For each vertex \(v \) in \(L_i \)

- The path of \(T_s \) from \(s \) to \(v \) has \(i \) edges
- Every path from \(s \) to \(v \) in \(G_s \) has at least \(i \) edges
Analysis

- Setting/getting a vertex/edge label takes $O(1)$ time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as DISCOVERY or CROSS
- Each vertex is inserted once into a sequence L_i
- Method incidentEdges is called once for each vertex
- BFS runs in $O(n + m)$ time provided the graph is represented by the adjacency list structure
 - Recall that $\sum_v \deg(v) = 2m$
Applications

- We can use the BFS traversal algorithm, for a graph G, to solve the following problems in $O(n + m)$ time
 - Compute the connected components of G
 - Compute a spanning forest of G
 - Find a simple cycle in G, or report that G is a forest
 - Given two vertices of G, find a path in G between them with the minimum number of edges, or report that no such path exists
DFS vs. BFS

<table>
<thead>
<tr>
<th>Applications</th>
<th>DFS</th>
<th>BFS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spanning forest, connected components, paths, cycles</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Shortest paths</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Biconnected components</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

DFS

BFS

© 2015 Goodrich and Tamassia
Breadth-First Search
DFS vs. BFS (cont.)

Back edge \((v,w)\)
- \(w\) is an ancestor of \(v\) in the tree of discovery edges

Cross edge \((v,w)\)
- \(w\) is in the same level as \(v\) or in the next level