Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Biconnected Components

Application: Networking

- A computer network can be modeled as a graph, where vertices are routers and edges are network connections between edges.
- A router can be considered critical if it can disconnect the network for that router to fail.
- It would be nice to identify which routers are critical.
* We can do such an identification by solving the biconnected components problem.

Separation Edges and Vertices

- Definitions
- Let \boldsymbol{G} be a connected graph
- A separation edge of \boldsymbol{G} is an edge whose removal disconnects \boldsymbol{G}
- A separation vertex of \boldsymbol{G} is a vertex whose removal disconnects \boldsymbol{G}
- Applications
- Separation edges and vertices represent single points of failure in a network and are critical to the operation of the network
- Example
- DFW, LGA and LAX are separation vertices
- (DFW,LAX) is a separation edge

Biconnected Graph

- Equivalent definitions of a biconnected graph G
- Graph \boldsymbol{G} has no separation edges and no separation vertices
- For any two vertices \boldsymbol{u} and \boldsymbol{v} of \boldsymbol{G}, there are two disjoint simple paths between \boldsymbol{u} and \boldsymbol{v} (i.e., two simple paths between u and v that share no other vertices or edges)
- For any two vertices \boldsymbol{u} and \boldsymbol{v} of \boldsymbol{G}, there is a simple cycle containing u and v
- Example

Biconnected Components

- Biconnected component of a graph G
- A maximal biconnected subgraph of G, or
- A subgraph consisting of a separation edge of G and its end vertices
- Interaction of biconnected components
- An edge belongs to exactly one biconnected component
- A nonseparation vertex belongs to exactly one biconnected component
- A separation vertex belongs to two or more biconnected components
- Example of a graph with four biconnected components

Equivalence Classes

- Given a set S, a relation R on S is a set of ordered pairs of elements of S, i.e., R is a subset of $S \times S$
- An equivalence relation R on S satisfies the following properties

Reflexive: $(\boldsymbol{x}, \boldsymbol{x}) \in \boldsymbol{R}$
Symmetric: $(x, y) \in R \Rightarrow(y, x) \in R$
Transitive: $(x, y) \in R \wedge(y, z) \in R \Rightarrow(x, z) \in R$

- An equivalence relation R on S induces a partition of the elements of S into equivalence classes
- Example (connectivity relation among the vertices of a graph):
- Let \boldsymbol{V} be the set of vertices of a graph \boldsymbol{G}
- Define the relation
$\boldsymbol{C}=\{(\boldsymbol{v}, \boldsymbol{w}) \in V \times V$ such that \boldsymbol{G} has a path from \boldsymbol{v} to $\boldsymbol{w}\}$
- Relation \boldsymbol{C} is an equivalence relation
- The equivalence classes of relation \boldsymbol{C} are the vertices in each connected component of graph \boldsymbol{G}

Link Relation

- Edges e and f of connected graph G are linked if
- $e=f$, or
- G has a simple cycle containing e and f
Theorem:
The link relation on the edges of a graph is an equivalence relation
Proof Sketch:
- The reflexive and symmetric properties follow from the definition
- For the transitive property, consider two simple cycles sharing an edge

Link Components

- The link components of a connected graph G are the equivalence classes of edges with respect to the link relation
A biconnected component of G is the subgraph of G induced by an equivalence class of linked edges
- A separation edge is a single-element equivalence class of linked edges
- A separation vertex has incident edges in at least two distinct equivalence classes of linked edge

Auxiliary Graph

- Auxiliary graph \boldsymbol{B} for a connected graph G
- Associated with a DFS traversal of G
- The vertices of \boldsymbol{B} are the edges of \boldsymbol{G}
- For each back edge e of $\boldsymbol{G}, \boldsymbol{B}$ has edges $\left(e, f_{1}\right),\left(e, f_{2}\right), \ldots,\left(e, f_{k}\right)$, where $f_{1}, f_{2}, \ldots, f_{k}$ are the discovery edges of G that form a simple cycle with e
- Its connected components correspond to the the link components of \boldsymbol{G}

DFS on graph \boldsymbol{G}

Auxiliary graph B

Auxiliary Graph (cont.)

- In the worst case, the number of edges of the auxiliary graph is proportional to nm

DFS on graph \boldsymbol{G}

Auxiliary graph B

An O(nm)-Time Algorithm

Lemma: The connected components of the auxiliary graph B correspond to the link components of the graph G that induced B.

- This lemma yields the following $O(n m)$-time algorithm for computing all the link components of a graph G with n vertices and m edges:

1. Perform a DFS traversal T on G.
2. Compute the auxiliary graph B by identifying the cycles of G induced by each back edge with respect to T.
3. Compute the connected components of B, for example, by performing a DFS traversal of the auxiliary graph B.
4. For each connected component of B, output the vertices of B (which are edges of G) as a link component of G.

A Linear-Time Algorithm

Algorithm LinkComponents (G) :
 Input: A connected graph G
 Output: The link components of G

Let F be an initially empty auxiliary graph.
Perform a DFS traversal of G starting at an arbitrary vertex s.
Add each DFS discovery edge f as a vertex in F and mark f "unlinked."
For each vertex v of G, let $p(v)$ be the parent of v in the DFS spanning tree.
for each vertex v, in increasing rank order as visited in the DFS traversal do
for each back edge $e=(u, v)$ with destination v do
Add e as a vertex of the graph F.
// March up from u to s adding edges to F only as necessary.
while $u \neq v$ do
Let f be the vertex in F corresponding to the discovery edge $(u, p(u))$.
Add the edge (e, f) to F.
if f is marked "unlinked" then
Mark f as "linked."
$u \leftarrow p(u)$
else
$u \leftarrow v \quad / /$ shortcut to the end of the while loop
Compute the connected components of the graph F.

Analysis with the Proxy Graph, F

- Proxy graph \boldsymbol{F} for a connected graph G
- Spanning forest of the auxiliary graph B
- Has \boldsymbol{m} vertices and $\boldsymbol{O}(\boldsymbol{m})$ edges
- Can be constructed in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
- Its connected components (trees) correspond to the the link components of \boldsymbol{G}
- Given a graph G with n vertices and m edges, we can compute the following in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time:
- The biconnected components of \boldsymbol{G}
- The separation vertices of \boldsymbol{G}
- The separation edges of G

DFS on graph \boldsymbol{G}

Proxy graph \boldsymbol{F}

