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Subgraphs 
q  A subgraph S of a graph 

G is a graph such that  
n  The vertices of S are a 

subset of the vertices of G 
n  The edges of S are a 

subset of the edges of G 

q  A spanning subgraph of G 
is a subgraph that 
contains all the vertices 
of G 

Subgraph 

Spanning subgraph 
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Application: Web Crawlers 
q  A fundamental kind of algorithmic operation that we 

might wish to perform on a graph is traversing the 
edges and the vertices of that graph.  

q  A traversal is a systematic procedure for exploring a 
graph by examining all of its vertices and edges.  

q  For example, a web crawler, which is the data 
collecting part of a search engine, must explore a 
graph of hypertext documents by examining its 
vertices, which are the documents, and its edges, 
which are the hyperlinks between documents.  

q  A traversal is efficient if it visits all the vertices and 
edges in linear time. 
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Connectivity 

q  A graph is 
connected if there is 
a path between 
every pair of 
vertices 

q  A connected 
component of a 
graph G is a 
maximal connected 
subgraph of G 

Connected graph 

Non connected graph with two 
connected components 
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Trees and Forests 
q  A (free) tree is an 

undirected graph T such 
that 
n  T is connected 
n  T has no cycles 
This definition of tree is 

different from the one of 
a rooted tree 

q  A forest is an undirected 
graph without cycles 

q  The connected 
components of a forest 
are trees 

Tree 

Forest 



© 2015 Goodrich and Tamassia Depth-First Search 6 

Spanning Trees and Forests 
q  A spanning tree of a 

connected graph is a 
spanning subgraph that is 
a tree 

q  A spanning tree is not 
unique unless the graph is 
a tree 

q  Spanning trees have 
applications to the design 
of communication 
networks 

q  A spanning forest of a 
graph is a spanning 
subgraph that is a forest 

Graph 

Spanning tree 
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Depth-First Search 
q  Depth-first search (DFS) 

is a general technique 
for traversing a graph 

q  A DFS traversal of a 
graph G  
n  Visits all the vertices and 

edges of G 
n  Determines whether G is 

connected 
n  Computes the connected 

components of G 
n  Computes a spanning 

forest of G 

q  DFS on a graph with n 
vertices and m edges 
takes O(n + m ) time 

q  DFS can be further 
extended to solve other 
graph problems 
n  Find and report a path 

between two given 
vertices 

n  Find a cycle in the graph 

q  Depth-first search is to 
graphs what Euler tour 
is to binary trees 



© 2015 Goodrich and Tamassia Depth-First Search 8 

DFS Algorithm from a Vertex 
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discovery edge 
back edge 

A visited vertex 
A unexplored vertex 

unexplored edge 
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Example (cont.) 
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DFS and Maze Traversal  
q  The DFS algorithm is 

similar to a classic 
strategy for exploring 
a maze 
n  We mark each 

intersection, corner 
and dead end (vertex) 
visited 

n  We mark each corridor 
(edge ) traversed 

n  We keep track of the 
path back to the 
entrance (start vertex) 
by means of a rope 
(recursion stack) 
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Properties of DFS 
Property 1 

 DFS(G, v) visits all the 
vertices and edges in 
the connected 
component of v 

Property 2 
 The discovery edges 
labeled by DFS(G, v) 
form a spanning tree of 
the connected 
component of v 
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The General DFS Algorithm 

q  Perform a DFS from each unexplored 
vertex: 
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Analysis of DFS 
q  Setting/getting a vertex/edge label takes O(1) time 
q  Each vertex is labeled twice  

n  once as UNEXPLORED 
n  once as VISITED 

q  Each edge is labeled twice 
n  once as UNEXPLORED 
n  once as DISCOVERY or BACK 

q  Method incidentEdges is called once for each vertex 
q  DFS runs in O(n + m) time provided the graph is 

represented by the adjacency list structure 
n  Recall that Σv deg(v) = 2m 
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Path Finding (not in book) 
q  We can specialize the DFS 

algorithm to find a path 
between two given 
vertices u and z using the 
template method pattern 

q  We call DFS(G, u) with u 
as the start vertex 

q  We use a stack S to keep 
track of the path between 
the start vertex and the 
current vertex 

q  As soon as destination 
vertex z is encountered, 
we return the path as the 
contents of the stack  

Algorithm pathDFS(G, v, z) 
 setLabel(v, VISITED) 
 S.push(v) 
if  v = z 

 return S.elements() 
for all  e ∈ G.incidentEdges(v) 

 if  getLabel(e) = UNEXPLORED 
  w ← opposite(v,e) 
  if getLabel(w) = UNEXPLORED 
    setLabel(e, DISCOVERY) 
   S.push(e) 
   pathDFS(G, w, z) 
   S.pop(e) 
  else 
    setLabel(e, BACK) 

S.pop(v) 
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Cycle Finding (not in book) 
q  We can specialize the 

DFS algorithm to find a 
simple cycle using the 
template method pattern 

q  We use a stack S to 
keep track of the path 
between the start vertex 
and the current vertex 

q  As soon as a back edge 
(v, w) is encountered, 
we return the cycle as 
the portion of the stack 
from the top to vertex w 

Algorithm cycleDFS(G, v, z) 
 setLabel(v, VISITED) 
 S.push(v) 
for all  e ∈ G.incidentEdges(v) 

 if  getLabel(e) = UNEXPLORED 
  w ← opposite(v,e) 
  S.push(e) 
  if getLabel(w) = UNEXPLORED 
    setLabel(e, DISCOVERY) 
   pathDFS(G, w, z) 
   S.pop(e) 
  else 
   T ← new empty stack 
   repeat 
    o ← S.pop() 
    T.push(o) 
   until o = w 
   return T.elements() 

S.pop(v) 


