
© 2015 Goodrich and Tamassia Depth-First Search 1

Depth-First Search

D B

A

C

E

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

© 2015 Goodrich and Tamassia Depth-First Search 2

Subgraphs
q  A subgraph S of a graph

G is a graph such that
n  The vertices of S are a

subset of the vertices of G
n  The edges of S are a

subset of the edges of G

q  A spanning subgraph of G
is a subgraph that
contains all the vertices
of G

Subgraph

Spanning subgraph

© 2015 Goodrich and Tamassia

Application: Web Crawlers
q  A fundamental kind of algorithmic operation that we

might wish to perform on a graph is traversing the
edges and the vertices of that graph.

q  A traversal is a systematic procedure for exploring a
graph by examining all of its vertices and edges.

q  For example, a web crawler, which is the data
collecting part of a search engine, must explore a
graph of hypertext documents by examining its
vertices, which are the documents, and its edges,
which are the hyperlinks between documents.

q  A traversal is efficient if it visits all the vertices and
edges in linear time.

Depth-First Search 3

© 2015 Goodrich and Tamassia Depth-First Search 4

Connectivity

q  A graph is
connected if there is
a path between
every pair of
vertices

q  A connected
component of a
graph G is a
maximal connected
subgraph of G

Connected graph

Non connected graph with two
connected components

© 2015 Goodrich and Tamassia Depth-First Search 5

Trees and Forests
q  A (free) tree is an

undirected graph T such
that
n  T is connected
n  T has no cycles
This definition of tree is

different from the one of
a rooted tree

q  A forest is an undirected
graph without cycles

q  The connected
components of a forest
are trees

Tree

Forest

© 2015 Goodrich and Tamassia Depth-First Search 6

Spanning Trees and Forests
q  A spanning tree of a

connected graph is a
spanning subgraph that is
a tree

q  A spanning tree is not
unique unless the graph is
a tree

q  Spanning trees have
applications to the design
of communication
networks

q  A spanning forest of a
graph is a spanning
subgraph that is a forest

Graph

Spanning tree

© 2015 Goodrich and Tamassia Depth-First Search 7

Depth-First Search
q  Depth-first search (DFS)

is a general technique
for traversing a graph

q  A DFS traversal of a
graph G
n  Visits all the vertices and

edges of G
n  Determines whether G is

connected
n  Computes the connected

components of G
n  Computes a spanning

forest of G

q  DFS on a graph with n
vertices and m edges
takes O(n + m) time

q  DFS can be further
extended to solve other
graph problems
n  Find and report a path

between two given
vertices

n  Find a cycle in the graph

q  Depth-first search is to
graphs what Euler tour
is to binary trees

© 2015 Goodrich and Tamassia Depth-First Search 8

DFS Algorithm from a Vertex

© 2015 Goodrich and Tamassia Depth-First Search 9

Example

D B

A

C

E

D B

A

C

E

D B

A

C

E

discovery edge
back edge

A visited vertex
A unexplored vertex

unexplored edge

© 2015 Goodrich and Tamassia Depth-First Search 10

Example (cont.)

D B

A

C

E

D B

A

C

E

D B

A

C

E

D B

A

C

E

© 2015 Goodrich and Tamassia Depth-First Search 11

DFS and Maze Traversal
q  The DFS algorithm is

similar to a classic
strategy for exploring
a maze
n  We mark each

intersection, corner
and dead end (vertex)
visited

n  We mark each corridor
(edge) traversed

n  We keep track of the
path back to the
entrance (start vertex)
by means of a rope
(recursion stack)

© 2015 Goodrich and Tamassia Depth-First Search 12

Properties of DFS
Property 1

 DFS(G, v) visits all the
vertices and edges in
the connected
component of v

Property 2
 The discovery edges
labeled by DFS(G, v)
form a spanning tree of
the connected
component of v

D B

A

C

E

© 2015 Goodrich and Tamassia

The General DFS Algorithm

q  Perform a DFS from each unexplored
vertex:

Depth-First Search 13

© 2015 Goodrich and Tamassia Depth-First Search 14

Analysis of DFS
q  Setting/getting a vertex/edge label takes O(1) time
q  Each vertex is labeled twice

n  once as UNEXPLORED
n  once as VISITED

q  Each edge is labeled twice
n  once as UNEXPLORED
n  once as DISCOVERY or BACK

q  Method incidentEdges is called once for each vertex
q  DFS runs in O(n + m) time provided the graph is

represented by the adjacency list structure
n  Recall that Σv deg(v) = 2m

© 2015 Goodrich and Tamassia Depth-First Search 15

Path Finding (not in book)
q  We can specialize the DFS

algorithm to find a path
between two given
vertices u and z using the
template method pattern

q  We call DFS(G, u) with u
as the start vertex

q  We use a stack S to keep
track of the path between
the start vertex and the
current vertex

q  As soon as destination
vertex z is encountered,
we return the path as the
contents of the stack

Algorithm pathDFS(G, v, z)
 setLabel(v, VISITED)
 S.push(v)
if v = z

 return S.elements()
for all e ∈ G.incidentEdges(v)

 if getLabel(e) = UNEXPLORED
 w ← opposite(v,e)
 if getLabel(w) = UNEXPLORED
 setLabel(e, DISCOVERY)
 S.push(e)
 pathDFS(G, w, z)
 S.pop(e)
 else
 setLabel(e, BACK)

S.pop(v)

© 2015 Goodrich and Tamassia Depth-First Search 16

Cycle Finding (not in book)
q  We can specialize the

DFS algorithm to find a
simple cycle using the
template method pattern

q  We use a stack S to
keep track of the path
between the start vertex
and the current vertex

q  As soon as a back edge
(v, w) is encountered,
we return the cycle as
the portion of the stack
from the top to vertex w

Algorithm cycleDFS(G, v, z)
 setLabel(v, VISITED)
 S.push(v)
for all e ∈ G.incidentEdges(v)

 if getLabel(e) = UNEXPLORED
 w ← opposite(v,e)
 S.push(e)
 if getLabel(w) = UNEXPLORED
 setLabel(e, DISCOVERY)
 pathDFS(G, w, z)
 S.pop(e)
 else
 T ← new empty stack
 repeat
 o ← S.pop()
 T.push(o)
 until o = w
 return T.elements()

S.pop(v)

