Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Depth-First Search

Subgraphs

- A subgraph S of a graph G is a graph such that
- The vertices of S are a subset of the vertices of G
- The edges of S are a subset of the edges of G
- A spanning subgraph of G is a subgraph that contains all the vertices of G

Subgraph

Spanning subgraph

Application: Web Crawlers

- A fundamental kind of algorithmic operation that we might wish to perform on a graph is traversing the edges and the vertices of that graph.
- A traversal is a systematic procedure for exploring a graph by examining all of its vertices and edges.
- For example, a web crawler, which is the data collecting part of a search engine, must explore a graph of hypertext documents by examining its vertices, which are the documents, and its edges, which are the hyperlinks between documents.
- A traversal is efficient if it visits all the vertices and edges in linear time.

Connectivity

- A graph is
connected if there is a path between every pair of vertices
- A connected component of a graph G is a maximal connected subgraph of G

Connected graph

Non connected graph with two connected components

Trees and Forests

- A (free) tree is an undirected graph T such that
- T is connected
- T has no cycles

This definition of tree is different from the one of a rooted tree

- A forest is an undirected graph without cycles
- The connected
components of a forest are trees

Forest

Spanning Trees and Forests

- A spanning tree of a connected graph is a spanning subgraph that is a tree
- A spanning tree is not unique unless the graph is a tree

Graph

- Spanning trees have applications to the design of communication networks
- A spanning forest of a graph is a spanning subgraph that is a forest

Spanning tree

Depth-First Search

- Depth-first search (DFS) is a general technique for traversing a graph
- A DFS traversal of a graph G
- Visits all the vertices and edges of G
- Determines whether G is connected
- Computes the connected components of G
- Computes a spanning forest of G
- DFS on a graph with n vertices and m edges takes $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time
- DFS can be further extended to solve other graph problems
- Find and report a path between two given vertices
- Find a cycle in the graph
- Depth-first search is to graphs what Euler tour is to binary trees

DFS Algorithm from a Vertex

Algorithm DFS (G, v) :

Input: A graph G and a vertex v in G
Output: A labeling of the edges in the connected component of v as discovery edges and back edges, and the vertices in the connected component of v as explored

Label v as explored
for each edge, e, that is incident to v in G do
if e is unexplored then
Let w be the end vertex of e opposite from v
if w is unexplored then
Label e as a discovery edge
$\operatorname{DFS}(G, w)$
else
Label e as a back edge

Example

(A) unexplored vertex
 (A) visited vertex
 \longrightarrow unexplored edge
 \longrightarrow discovery edge
 - - -- back edge

Example (cont.)

© 2015 Goodrich and Tamassia
Depth-First Search

DFS and Maze Traversal

- The DFS algorithm is similar to a classic strategy for exploring a maze
- We mark each intersection, corner and dead end (vertex) visited
- We mark each corridor (edge) traversed
- We keep track of the path back to the entrance (start vertex) by means of a rope
 (recursion stack)

Properties of DFS

Property 1
$\operatorname{DFS}(G, v)$ visits all the vertices and edges in the connected component of v
Property 2
The discovery edges labeled by $\operatorname{DFS}(\boldsymbol{G}, \boldsymbol{v})$ form a spanning tree of the connected component of v

The General DFS Algorithm

a Perform a DFS from each unexplored vertex:

Algorithm DFS (G) :

Input: A graph G

Output: A labeling of the vertices in each connected component of G as explored
Initially label each vertex in v as unexplored for each vertex, v, in G do
if v is unexplored then
DFS (G, v)

Analysis of DFS

- Setting/getting a vertex/edge label takes $\boldsymbol{O}(1)$ time
- Each vertex is labeled twice
- once as UNEXPLORED
- once as VISITED
- Each edge is labeled twice
- once as UNEXPLORED
- once as DISCOVERY or BACK
- Method incidentEdges is called once for each vertex
- DFS runs in $\boldsymbol{O}(\boldsymbol{n}+\boldsymbol{m})$ time provided the graph is represented by the adjacency list structure
- Recall that $\boldsymbol{\Sigma}_{v} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{m}$

Path Finding (not in book)

- We can specialize the DFS algorithm to find a path between two given vertices u and z using the template method pattern
- We call $\boldsymbol{D F S}(\boldsymbol{G}, \boldsymbol{u})$ with \boldsymbol{u} as the start vertex
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as destination vertex z is encountered, we return the path as the contents of the stack

```
Algorithm pathDFS(G, v, z)
    setLabel(v, VISITED)
    S.push(v)
    if \(v=z\)
        return S.elements()
    for all \(e \in\) G.incidentEdges( \((\nu)\)
    if \(\operatorname{getLabel}(e)=\) UNEXPLORED
        \(w \leftarrow\) opposite ( \(v, e\) )
        if \(\operatorname{getLabel}(w)=\) UNEXPLORED
            setLabel(e, DISCOVERY)
            S.push(e)
            pathDFS(G, w, z)
            S.pop(e)
        else
            setLabel(e, BACK)
    S.pop(v)
```


Cycle Finding (not in book)

- We can specialize the DFS algorithm to find a simple cycle using the template method pattern
- We use a stack \boldsymbol{S} to keep track of the path between the start vertex and the current vertex
- As soon as a back edge (v, w) is encountered, we return the cycle as the portion of the stack from the top to vertex \boldsymbol{w}

```
Algorithm cycleDFS(G, \(v, z)\)
    setLabel(v, VISITED)
    S.push(v)
    for all \(e \in\) G.incidentEdges(v)
    if \(\operatorname{getLabel}(e)=\) UNEXPLORED
        \(w \leftarrow \operatorname{opposite}(v, e)\)
        S.push(e)
        if \(\operatorname{getLabel}(w)=\) UNEXPLORED
            setLabel(e, DISCOVERY)
            pathDFS( \(G, w, z)\)
            S.pop(e)
        else
            \(T \leftarrow\) new empty stack
            repeat
            \(o \leftarrow S . p o p()\)
            T.push(o)
        until \(o=w\)
        return T.elements()
    S.pop(v)
```

