
© 2015 Goodrich and Tamassia Directed Graphs 1

Directed Graphs
JFK

BOS

MIA

ORD

LAX
DFW

SFO

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

© 2015 Goodrich and Tamassia Directed Graphs 2

Digraphs
q  A digraph is a graph

whose edges are all
directed
n  Short for “directed graph”

q  Applications
n  one-way streets
n  flights
n  task scheduling

A

C

E

B

D

© 2015 Goodrich and Tamassia Directed Graphs 3

Digraph Properties

q  A graph G=(V,E) such that
n  Each edge goes in one direction:
n  Edge (a,b) goes from a to b, but not b to a

q  If G is simple, m < n⋅(n - 1)
q  If we keep in-edges and out-edges in separate

adjacency lists, we can perform listing of
incoming edges and outgoing edges in time
proportional to their size

A

C

E

B

D

© 2015 Goodrich and Tamassia Directed Graphs 4

Digraph Application
q  Scheduling: edge (a,b) means task a must be

completed before b can be started

The good life

cs141 cs131 cs121

cs53 cs52 cs51

cs46 cs22 cs21

cs161

cs151

cs171

© 2015 Goodrich and Tamassia Directed Graphs 5

Directed DFS
q  We can specialize the traversal

algorithms (DFS and BFS) to
digraphs by traversing edges
only along their direction

q  In the directed DFS algorithm,
we have four types of edges
n  discovery edges
n  back edges
n  forward edges
n  cross edges

q  A directed DFS starting at a
vertex s determines the vertices
reachable from s

A

C

E

B

D

© 2015 Goodrich and Tamassia

The Directed DFS Algorithm

Directed Graphs 6

© 2015 Goodrich and Tamassia Directed Graphs 7

Reachability

q  DFS tree rooted at v: vertices reachable
from v via directed paths

A

C

E

B

D

F
A

C

E D

A

C

E

B

D

F

© 2015 Goodrich and Tamassia Directed Graphs 8

Strong Connectivity
q  Each vertex can reach all other vertices

a

d

c

b

e

f

g

© 2015 Goodrich and Tamassia Directed Graphs 9

q  Pick a vertex v in G
q  Perform a DFS from v in G

n  If there’s a w not visited, print “no”

q  Let G’ be G with edges reversed
q  Perform a DFS from v in G’

n  If there’s a w not visited, print “no”
n  Else, print “yes”

q  Running time: O(n+m)

Strong Connectivity
Algorithm

G:

G’:

a

d

c

b

e

f

g

a

d

c

b

e

f

g

© 2015 Goodrich and Tamassia Directed Graphs 10

q  Maximal subgraphs such that each vertex can reach
all other vertices in the subgraph

q  Can also be done in O(n+m) time using DFS, but is
more complicated (similar to biconnectivity).

Strongly Connected
Components

{ a , c , g }

{ f , d , e , b }

a

d

c

b

e

f

g

© 2015 Goodrich and Tamassia Directed Graphs 11

Transitive Closure
q  Given a digraph G, the

transitive closure of G is the
digraph G* such that
n  G* has the same vertices

as G
n  if G has a directed path

from u to v (u ≠ v), G*
has a directed edge from
u to v

q  The transitive closure
provides reachability
information about a digraph

B

A

D

C

E

B

A

D

C

E

G

G*

© 2015 Goodrich and Tamassia Directed Graphs 12

Computing the
Transitive Closure
q  We can perform

DFS starting at
each vertex
n  O(n(n+m))

 If there's a way to get
from A to B and from
B to C, then there's a
way to get from A to C.

Alternatively ... Use
dynamic programming:
The Floyd-Warshall
Algorithm

© 2015 Goodrich and Tamassia Directed Graphs 13

Floyd-Warshall
Transitive Closure
q  Idea #1: Number the vertices 1, 2, …, n.
q  Idea #2: Consider paths that use only

vertices numbered 1, 2, …, k, as
intermediate vertices:

k

j

i

Uses only vertices
numbered 1,…,k-1 Uses only vertices

numbered 1,…,k-1

Uses only vertices numbered 1,…,k
(add this edge if it’s not already in)

© 2015 Goodrich and Tamassia Directed Graphs 14

Floyd-Warshall’s Algorithm:
High-Level View
q  Number vertices v1 , …, vn
q  Compute digraphs G0, …, Gn

n  G0=G
n  Gk has directed edge (vi, vj) if G has a directed

path from vi to vj with intermediate vertices in
{v1 , …, vk}

q  We have that Gn = G*
q  In phase k, digraph Gk is computed from Gk - 1
q  Running time: O(n3), assuming areAdjacent is

O(1) (e.g., adjacency matrix)

© 2015 Goodrich and Tamassia

The Floyd-Warshall Algorithm

q  The running time is clearly O(n3).
Directed Graphs 15

© 2015 Goodrich and Tamassia Directed Graphs 16

Floyd-Warshall Example

JFK

BOS

MIA

ORD

LAX
DFW

SFO

The
imag
e
cann
ot be v2

The
imag
e
cann
ot be v1

The
imag
e
cann
ot be v3

The
imag
e
cann
ot v4

The
imag
e
cann
ot be v5

The
imag
e
cann
ot v6

v7

© 2015 Goodrich and Tamassia Directed Graphs 17

Floyd-Warshall, Iteration 1

JFK

BOS

MIA

ORD

LAX
DFW

SFO

The
imag
e
cann
ot be v2

The
imag
e
cann
ot be v1

The
imag
e
cann
ot be v3

The
imag
e
cann
ot v4

The
imag
e
cann
ot be v5

The
imag
e
cann
ot v6

v7

© 2015 Goodrich and Tamassia Directed Graphs 18

Floyd-Warshall, Iteration 2

JFK

BOS

MIA

ORD

LAX
DFW

SFO

The
imag
e
cann
ot be v2

The
imag
e
cann
ot be v1

The
imag
e
cann
ot be v3

The
imag
e
cann
ot v4

The
imag
e
cann
ot be v5

The
imag
e
cann
ot v6

v7

© 2015 Goodrich and Tamassia Directed Graphs 19

Floyd-Warshall, Iteration 3

JFK

BOS

MIA

ORD

LAX
DFW

SFO

The
imag
e
cann
ot be v2

The
imag
e
cann
ot be v1

The
imag
e
cann
ot be v3

The
imag
e
cann
ot v4

The
imag
e
cann
ot be v5

The
imag
e
cann
ot v6

v7

© 2015 Goodrich and Tamassia Directed Graphs 20

Floyd-Warshall, Iteration 4

JFK

BOS

MIA

ORD

LAX
DFW

SFO

The
imag
e
cann
ot be v2

The
imag
e
cann
ot be v1

The
imag
e
cann
ot be v3

The
imag
e
cann
ot v4

The
imag
e
cann
ot be v5

The
imag
e
cann
ot v6

v7

© 2015 Goodrich and Tamassia Directed Graphs 21

Floyd-Warshall, Iteration 5

JFK

MIA

ORD

LAX
DFW

SFO

The
imag
e
cann
ot be v2

The
imag
e
cann
ot be v1

The
imag
e
cann
ot be v3

The
imag
e
cann
ot v4

The
imag
e
cann
ot be v5

The
imag
e
cann
ot v6

v7
BOS

© 2015 Goodrich and Tamassia Directed Graphs 22

Floyd-Warshall, Iteration 6

JFK

MIA

ORD

LAX
DFW

SFO

The
imag
e
cann
ot be v2

The
imag
e
cann
ot be v1

The
imag
e
cann
ot be v3

The
imag
e
cann
ot v4

The
imag
e
cann
ot be v5

The
imag
e
cann
ot v6

v7
BOS

© 2015 Goodrich and Tamassia Directed Graphs 23

Floyd-Warshall, Conclusion

JFK

MIA

ORD

LAX
DFW

SFO

The
imag
e
cann
ot be v2

The
imag
e
cann
ot be v1

The
imag
e
cann
ot be v3

The
imag
e
cann
ot v4

The
imag
e
cann
ot be v5

The
imag
e
cann
ot v6

v7
BOS

© 2015 Goodrich and Tamassia Directed Graphs 24

DAGs and Topological Ordering
q  A directed acyclic graph (DAG) is a

digraph that has no directed cycles
q  A topological ordering of a digraph

is a numbering
 v1 , …, vn

 of the vertices such that for every
edge (vi , vj), we have i < j

q  Example: in a task scheduling
digraph, a topological ordering a
task sequence that satisfies the
precedence constraints

Theorem
 A digraph admits a topological
ordering if and only if it is a DAG

B

A

D

C

E

DAG G

B

A

D

C

E

Topological
ordering of G

v1

v2

v3

v4 v5

© 2015 Goodrich and Tamassia Directed Graphs 25

write c.s. program

play

Topological Sorting
q  Number vertices, so that (u,v) in E implies u < v

wake up

eat

nap

study computer sci.

more c.s.

work out

sleep

dream about graphs

A typical student day 1

2 3

4 5

6

7

8

9

10
11

bake cookies

© 2015 Goodrich and Tamassia Directed Graphs 26

q  Note: This algorithm is different than the
one in the book

q  Running time: O(n + m)

Algorithm for Topological Sorting

Algorithm TopologicalSort(G)
 H ← G // Temporary copy of G
 n ← G.numVertices()
 while H is not empty do

 Let v be a vertex with no outgoing edges
 Label v ← n
 n ← n - 1
 Remove v from H

© 2015 Goodrich and Tamassia Directed Graphs 27

Implementation with DFS
q  Simulate the algorithm by

using depth-first search
q  O(n+m) time.

Algorithm topologicalDFS(G, v)
 Input graph G and a start vertex v of G
 Output labeling of the vertices of G
 in the connected component of v
 setLabel(v, VISITED)
for all e ∈ G.outEdges(v)

 { outgoing edges }
 w ← opposite(v,e)
 if getLabel(w) = UNEXPLORED
 { e is a discovery edge }
 topologicalDFS(G, w)
 else
 { e is a forward or cross edge }

Label v with topological number n
 n ← n - 1

Algorithm topologicalDFS(G)
 Input dag G
 Output topological ordering of G

 n ← G.numVertices()
for all u ∈ G.vertices()
 setLabel(u, UNEXPLORED)
for all v ∈ G.vertices()
 if getLabel(v) = UNEXPLORED
 topologicalDFS(G, v)

© 2015 Goodrich and Tamassia Directed Graphs 28

Topological Sorting Example

© 2015 Goodrich and Tamassia Directed Graphs 29

Topological Sorting Example

9

© 2015 Goodrich and Tamassia Directed Graphs 30

Topological Sorting Example

8

9

© 2015 Goodrich and Tamassia Directed Graphs 31

Topological Sorting Example

7
8

9

© 2015 Goodrich and Tamassia Directed Graphs 32

Topological Sorting Example

7
8

6

9

© 2015 Goodrich and Tamassia Directed Graphs 33

Topological Sorting Example

7
8

5 6

9

© 2015 Goodrich and Tamassia Directed Graphs 34

Topological Sorting Example

7

4

8

5 6

9

© 2015 Goodrich and Tamassia Directed Graphs 35

Topological Sorting Example

7

4

8

5 6

3

9

© 2015 Goodrich and Tamassia Directed Graphs 36

Topological Sorting Example
2

7

4

8

5 6

3

9

© 2015 Goodrich and Tamassia Directed Graphs 37

Topological Sorting Example
2

7

4

8

5 6

1

3

9

