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Digraphs 
q  A digraph is a graph 

whose edges are all 
directed 
n  Short for “directed graph” 

q  Applications 
n  one-way streets 
n  flights 
n  task scheduling 
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Digraph Properties 

q  A graph G=(V,E) such that 
n  Each edge goes in one direction: 
n  Edge (a,b) goes from a to b, but not b to a 

q  If G is simple, m < n⋅(n - 1) 
q  If we keep in-edges and out-edges in separate 

adjacency lists, we can perform listing of 
incoming edges and outgoing edges in time 
proportional to their size 
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Digraph Application 
q  Scheduling: edge (a,b) means task a must be 

completed before b can be started 
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Directed DFS 
q  We can specialize the traversal 

algorithms (DFS and BFS) to 
digraphs by traversing edges 
only along their direction 

q  In the directed DFS algorithm, 
we have four types of edges 
n  discovery edges 
n  back edges 
n  forward edges 
n  cross edges 

q  A directed DFS starting at a 
vertex s determines the vertices 
reachable from s 
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The Directed DFS Algorithm 

Directed Graphs 6 
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Reachability 

q  DFS tree rooted at v: vertices reachable 
from v via directed paths 
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Strong Connectivity 
q  Each vertex can reach all other vertices 
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q  Pick a vertex v in G 
q  Perform a DFS from v in G 

n  If there’s a w not visited, print “no” 

q  Let G’ be G with edges reversed 
q  Perform a DFS from v in G’ 

n  If there’s a w not visited, print “no” 
n  Else, print “yes” 

q  Running time: O(n+m) 

Strong Connectivity 
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q  Maximal subgraphs such that each vertex can reach 
all other vertices in the subgraph 

q  Can also be done in O(n+m) time using DFS, but is 
more complicated (similar to biconnectivity). 

Strongly Connected 
Components 

{ a , c , g }

{ f , d , e , b }
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Transitive Closure 
q  Given a digraph G, the 

transitive closure of G is the 
digraph G* such that 
n  G* has the same vertices 

as G 
n  if G has a directed path 

from u to v (u ≠ v), G* 
has a directed edge from 
u to v 

q  The transitive closure 
provides reachability 
information about a digraph 
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Computing the 
Transitive Closure 
q  We can perform 

DFS starting at 
each vertex 
n  O(n(n+m)) 

 If there's a way to get  
from A to B and from        
B to C, then there's a        
way to get from A to C.

Alternatively ... Use 
dynamic programming: 
The Floyd-Warshall 
Algorithm 
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Floyd-Warshall 
Transitive Closure 
q  Idea #1: Number the vertices 1, 2, …, n. 
q  Idea #2: Consider paths that use only 

vertices numbered 1, 2, …, k, as 
intermediate vertices: 

k 

j 

i 

Uses only vertices 
numbered 1,…,k-1 Uses only vertices 

numbered 1,…,k-1 

Uses only vertices numbered 1,…,k 
(add this edge if it’s not already in) 
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Floyd-Warshall’s Algorithm: 
High-Level View 
q  Number vertices v1 , …, vn  
q  Compute digraphs G0, …, Gn 

n  G0=G  
n  Gk has directed edge (vi, vj) if G has a directed 

path from vi to vj with intermediate vertices in  
{v1 , …, vk}  

q  We have that Gn = G* 
q  In phase k, digraph Gk is computed from Gk - 1 
q  Running time: O(n3), assuming areAdjacent is 

O(1) (e.g., adjacency matrix) 
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The Floyd-Warshall Algorithm 

q  The running time is clearly O(n3). 
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Floyd-Warshall Example 
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Floyd-Warshall, Iteration 1 

JFK

BOS

MIA

ORD

LAX
DFW

SFO

The 
imag
e 
cann
ot be v2

The 
imag
e 
cann
ot be v1

The 
imag
e 
cann
ot be v3

The 
imag
e 
cann
ot v4

The 
imag
e 
cann
ot be v5

The 
imag
e 
cann
ot v6

v7



© 2015 Goodrich and Tamassia Directed Graphs 18 

Floyd-Warshall, Iteration 2 

JFK

BOS

MIA

ORD

LAX
DFW

SFO

The 
imag
e 
cann
ot be v2

The 
imag
e 
cann
ot be v1

The 
imag
e 
cann
ot be v3

The 
imag
e 
cann
ot v4

The 
imag
e 
cann
ot be v5

The 
imag
e 
cann
ot v6

v7



© 2015 Goodrich and Tamassia Directed Graphs 19 

Floyd-Warshall, Iteration 3 
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Floyd-Warshall, Iteration 4 

JFK

BOS

MIA

ORD

LAX
DFW

SFO

The 
imag
e 
cann
ot be v2

The 
imag
e 
cann
ot be v1

The 
imag
e 
cann
ot be v3

The 
imag
e 
cann
ot v4

The 
imag
e 
cann
ot be v5

The 
imag
e 
cann
ot v6

v7



© 2015 Goodrich and Tamassia Directed Graphs 21 

Floyd-Warshall, Iteration 5 
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Floyd-Warshall, Iteration 6 
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Floyd-Warshall, Conclusion 
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DAGs and Topological Ordering 
q  A directed acyclic graph (DAG) is a 

digraph that has no directed cycles 
q  A topological ordering of a digraph 

is a numbering  
 v1 , …, vn  

 of the vertices such that for every 
edge (vi , vj), we have i < j 

q  Example: in a task scheduling 
digraph, a topological ordering a 
task sequence that satisfies the 
precedence constraints 

Theorem 
 A digraph admits a topological 
ordering if and only if it is a DAG 
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write c.s. program 

play 

Topological Sorting 
q  Number vertices, so that (u,v) in E implies u < v 
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q  Note: This algorithm is different than the 
one in the book 

 
q  Running time: O(n + m) 

Algorithm for Topological Sorting 

Algorithm TopologicalSort(G) 
      H ← G  // Temporary copy of G 
      n ← G.numVertices() 
      while H is not empty do 

 Let v be a vertex with no outgoing edges 
 Label v ← n 
 n ← n - 1 
 Remove v from H 
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Implementation with DFS 
q  Simulate the algorithm by 

using depth-first search 
q  O(n+m) time. 

Algorithm topologicalDFS(G, v) 
 Input graph G and a start vertex v of G  
 Output labeling of the vertices of G  
  in the connected component of v  
 setLabel(v, VISITED) 
for all  e ∈ G.outEdges(v)  

 { outgoing edges } 
 w ← opposite(v,e) 
 if getLabel(w) = UNEXPLORED 
  { e is a discovery edge } 
  topologicalDFS(G, w) 
 else 
  { e is a forward or cross edge } 

Label v with topological number n 
 n ← n - 1 

Algorithm topologicalDFS(G) 
 Input dag G 
 Output topological ordering of G  

    n ← G.numVertices() 
for all  u ∈ G.vertices() 
   setLabel(u, UNEXPLORED) 
for all  v ∈ G.vertices() 
  if  getLabel(v) = UNEXPLORED 
  topologicalDFS(G, v) 
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Topological Sorting Example  
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Topological Sorting Example  
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Topological Sorting Example  
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Topological Sorting Example  
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Topological Sorting Example  
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Topological Sorting Example  
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Topological Sorting Example  

7 

4 

8 

5 6 

9 



© 2015 Goodrich and Tamassia Directed Graphs 35 

Topological Sorting Example  
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Topological Sorting Example  
2 

7 

4 

8 

5 6 

3 

9 



© 2015 Goodrich and Tamassia Directed Graphs 37 

Topological Sorting Example  
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