Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Directed Graphs

Digraphs

- A digraph is a graph whose edges are all directed
- Short for "directed graph"
- Applications
- one-way streets
- flights
- task scheduling

Digraph Properties

- A graph $G=(V, E)$ such that
- Each edge goes in one direction:

- Edge (a, b) goes from a to b, but not b to a
- If G is simple, $\boldsymbol{m} \leq \boldsymbol{n} \cdot(\boldsymbol{n}-1)$
- If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of incoming edges and outgoing edges in time proportional to their size

Digraph Application

- Scheduling: edge (a, b) means task a must be completed before b can be started

Directed DFS

- We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction
- In the directed DFS algorithm, we have four types of edges
- discovery edges
- back edges
- forward edges
- cross edges
- A directed DFS starting at a vertex s determines the vertices
 reachable from s

The Directed DFS Algorithm

Algorithm DirectedDFS (G, v) :

Label v as active // Every vertex is initially unexplored for each outgoing edge, e, that is incident to v in G do
if e is unexplored then
Let w be the destination vertex for e
if w is unexplored and not active then
Label e as a discovery edge
DirectedDFS (G, w)
else if w is active then
Label e as a back edge
else
Label e as a forward/cross edge
Label v as explored

Reachability

- DFS tree rooted at v: vertices reachable from v via directed paths

(c) 2015 Goodrich and Tamassia

Directed Graphs

Strong Connectivity

a Each vertex can reach all other vertices

Strong Connectivity Algorithm

- Pick a vertex vin G
- Perform a DFS from v in G
- If there's a w not visited, print "no"
- Let G^{\prime} be G with edges reversed
- Perform a DFS from v in G^{\prime}
- If there's a w not visited, print "no"
- Else, print "yes"
- Running time: $\mathrm{O}(\mathrm{n}+\mathrm{m})$

Strongly Connected Components

- Maximal subgraphs such that each vertex can reach all other vertices in the subgraph
- Can also be done in O(n+m) time using DFS, but is more complicated (similar to biconnectivity).

$\{\mathbf{a}, \mathrm{c}, \mathrm{g}\}$
$\{\mathbf{f}, \mathbf{d}, \mathbf{e}, \mathbf{b}\}$

Transitive Closure

- Given a digraph G, the transitive closure of G is the digraph G^{*} such that
- \boldsymbol{G}^{*} has the same vertices as \boldsymbol{G}
- if G has a directed path from u to $v(u \neq v), G^{*}$ has a directed edge from u to v
- The transitive closure provides reachability information about a digraph

Computing the Transitive Closure

- We can perform DFS starting at each vertex
- $\mathrm{O}(\mathrm{n}(\mathrm{n}+\mathrm{m}))$

Floyd-Warshall Transitive Closure

- Idea \#1: Number the vertices 1, 2, ..., n.
- Idea \#2: Consider paths that use only
 vertices numbered $1,2, \ldots, k$, as intermediate vertices:

Uses only vertices numbered $1, \ldots, k$

Floyd-Warshall’s Algorithm: High-Level View

- Number vertices $\boldsymbol{v}_{1}, \ldots, v_{n}$
- Compute digraphs $\boldsymbol{G}_{0}, \ldots, \boldsymbol{G}_{\boldsymbol{n}}$
- $\boldsymbol{G}_{0}=\boldsymbol{G}$
- $\boldsymbol{G}_{\boldsymbol{k}}$ has directed edge $\left(\boldsymbol{v}_{\boldsymbol{i}}, \boldsymbol{v}_{j}\right)$ if \boldsymbol{G} has a directed path from v_{i} to v_{j} with intermediate vertices in $\left\{v_{1}, \ldots, v_{k}\right\}$
- We have that $\boldsymbol{G}_{\boldsymbol{n}}=\boldsymbol{G}^{*}$
- In phase \boldsymbol{k}, digraph $\boldsymbol{G}_{\boldsymbol{k}}$ is computed from $\boldsymbol{G}_{\boldsymbol{k}-1}$
- Running time: $\boldsymbol{O}\left(\boldsymbol{n}^{3}\right)$, assuming areAdjacent is $\boldsymbol{O}(1)$ (e.g., adjacency matrix)

The Floyd-Warshall Algorithm

Algorithm FloydWarshall (\vec{G}) :
Input: A digraph \vec{G} with n vertices
Output: The transitive closure \vec{G}^{*} of \vec{G}
Let $v_{1}, v_{2}, \ldots, v_{n}$ be an arbitrary numbering of the vertices of \vec{G}
$\vec{G}_{0} \leftarrow \vec{G}$
for $k \leftarrow 1$ to n do

$$
\begin{aligned}
& \vec{G}_{k} \leftarrow \vec{G}_{k-1} \\
& \text { for } i \leftarrow 1 \text { to } n, i \neq k \text { do } \\
& \quad \text { for } j \leftarrow 1 \text { to } n, j \neq i, k \text { do }
\end{aligned}
$$

if both edges $\left(v_{i}, v_{k}\right)$ and $\left(v_{k}, v_{j}\right)$ are in \vec{G}_{k-1} then
if \vec{G}_{k} does not contain directed edge $\left(v_{i}, v_{j}\right)$ then add directed edge $\left(v_{i}, v_{j}\right)$ to \vec{G}_{k}

return \vec{G}_{n}

- The running time is clearly $O\left(n^{3}\right)$.

DAGs and Topological Ordering

- A directed acyclic graph (DAG) is a digraph that has no directed cycles
- A topological ordering of a digraph is a numbering

$$
v_{1}, \ldots, v_{n}
$$

of the vertices such that for every edge $\left(v_{i}, v_{j}\right)$, we have $i<j$

- Example: in a task scheduling digraph, a topological ordering a task sequence that satisfies the precedence constraints
Theorem
A digraph admits a topological ordering if and only if it is a DAG

Topological Sorting

- Number vertices, so that (u, v) in E implies $u<v$

(c) 2015 Goodrich and Tamassia

Directed Graphs

Algorithm for Topological Sorting

- Note: This algorithm is different than the one in the book

```
Algorithm TopologicalSort( \(\boldsymbol{G}\) )
    \(\boldsymbol{H} \leftarrow \boldsymbol{G} \quad\) // Temporary copy of \(\boldsymbol{G}\)
    \(n \leftarrow G . n u m V e r t i c e s()\)
    while \(\boldsymbol{H}\) is not empty do
        Let \(\boldsymbol{v}\) be a vertex with no outgoing edges
        Label \(\boldsymbol{v} \leftarrow \boldsymbol{n}\)
        \(n \leftarrow n-1\)
        Remove \(v\) from \(\boldsymbol{H}\)
```

- Running time: $\mathrm{O}(\mathrm{n}+\mathrm{m})$

Implementation with DFS

- Simulate the algorithm by using depth-first search
- $O(n+m)$ time.

Algorithm topologicalDFS(G) Input dag \boldsymbol{G}
Output topological ordering of G $n \leftarrow$ G.numVertices()
for all $\boldsymbol{u} \in$ G.vertices()
setLabel(u, UNEXPLORED)
for all $v \in G . v e r t i c e s()$
if $\operatorname{getLabel}(v)=$ UNEXPLORED topologicalDFS(G, v)

Algorithm topologicalDFS(G, v)
Input graph \boldsymbol{G} and a start vertex \boldsymbol{v} of \boldsymbol{G}
Output labeling of the vertices of \boldsymbol{G}
in the connected component of v
setLabel(v, VISITED)
for all $e \in$ G.outEdges(v)
\{ outgoing edges \}
$w \leftarrow$ opposite (v,e)
if $\operatorname{getLabel}(w)=$ UNEXPLORED
$\{e$ is a discovery edge \}
topologicalDFS(G, w)
else
\{ e is a forward or cross edge \}
Label \boldsymbol{v} with topological number \boldsymbol{n} $n \leftarrow n-1$

Topological Sorting Example

(c) 2015 Goodrich and Tamassia

Topological Sorting Example

(C) 2015 Goodrich and Tamassia

Topological Sorting Example

(C) 2015 Goodrich and Tamassia

Topological Sorting Example

(C) 2015 Goodrich and Tamassia

Topological Sorting Example

(C) 2015 Goodrich and Tamassia

Directed Graphs

Topological Sorting Example

© 2015 Goodrich and Tamassia
Directed Graphs

Topological Sorting Example

(C) 2015 Goodrich and Tamassia

Directed Graphs

Topological Sorting Example

(c) 2015 Goodrich and Tamassia

Directed Graphs

Topological Sorting Example

© 2015 Goodrich and Tamassia
Directed Graphs

Topological Sorting Example

© 2015 Goodrich and Tamassia
Directed Graphs

