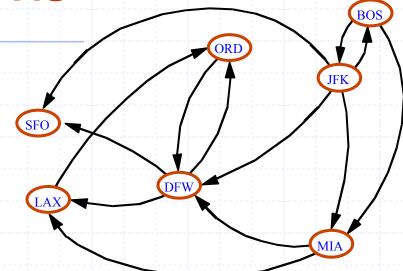
Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Directed Graphs



Digraphs

- A digraph is a graph whose edges are all directed
 - Short for "directed graph"
- Applications
 - one-way streets
 - flights
 - task scheduling

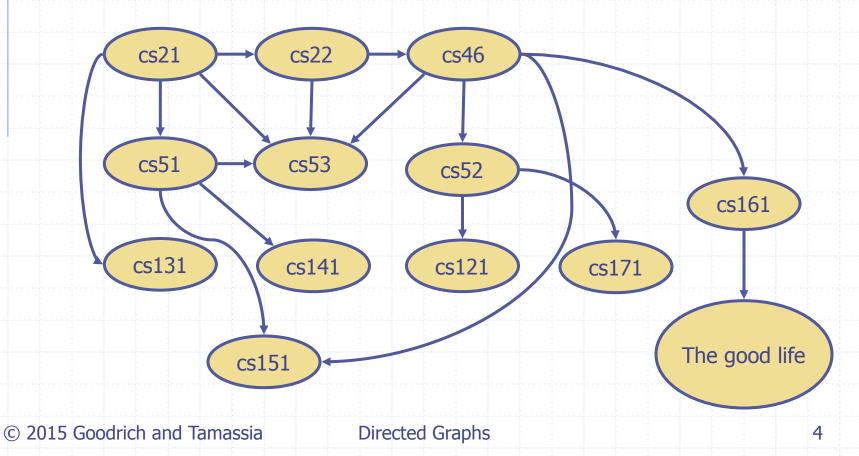
R

Digraph Properties

 \square A graph G=(V,E) such that Each edge goes in one direction: Edge (a,b) goes from a to b, but not b to a □ If G is simple, $m \le n \cdot (n - 1)$ □ If we keep in-edges and out-edges in separate adjacency lists, we can perform listing of incoming edges and outgoing edges in time proportional to their size

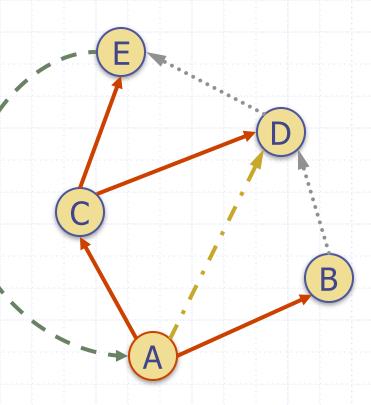
Digraph Application

Scheduling: edge (a,b) means task a must be completed before b can be started



Directed DFS

- We can specialize the traversal algorithms (DFS and BFS) to digraphs by traversing edges only along their direction
- In the directed DFS algorithm, we have four types of edges
 - discovery edges
 - back edges
 - forward edges
 - cross edges
- A directed DFS starting at a vertex s determines the vertices reachable from s

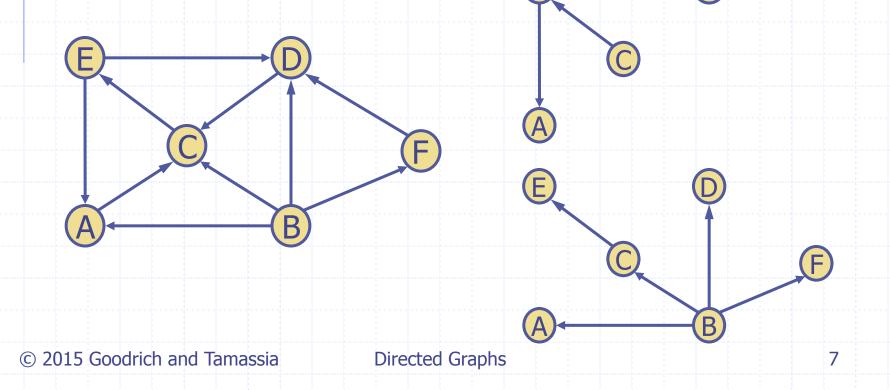


The Directed DFS Algorithm

Algorithm DirectedDFS(G, v): Label v as active // Every vertex is initially unexplored for each outgoing edge, e, that is incident to v in G do if e is unexplored then Let w be the destination vertex for e if w is unexplored and not active then Label e as a discovery edge $\mathsf{DirectedDFS}(G, w)$ else if w is active then Label *e* as a back edge else Label e as a forward/cross edge Label v as explored

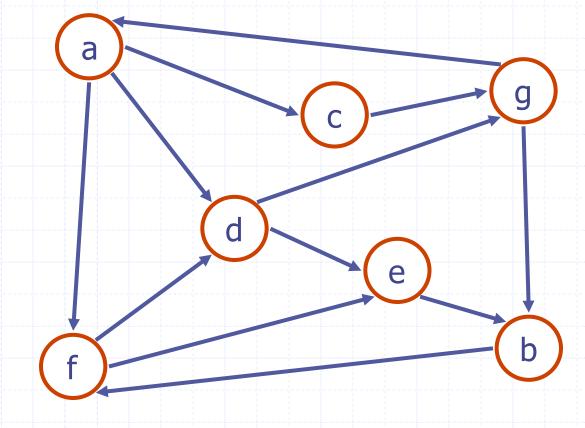
Reachability

DFS tree rooted at v: vertices reachable from v via directed paths



Strong Connectivity

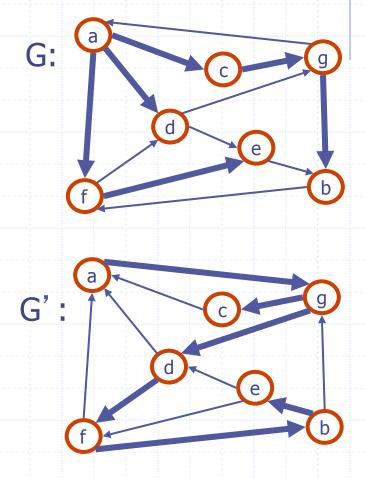
Each vertex can reach all other vertices



© 2015 Goodrich and Tamassia

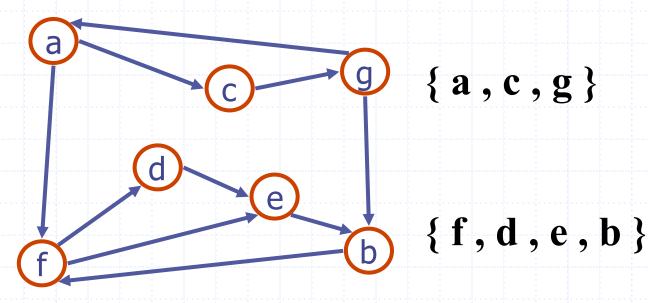
Strong Connectivity Algorithm

- Pick a vertex v in G
- Perform a DFS from v in G
 - If there's a w not visited, print "no"
- □ Let G' be G with edges reversed
- □ Perform a DFS from v in G'
 - If there's a w not visited, print "no"
 - Else, print "yes"
- Running time: O(n+m)



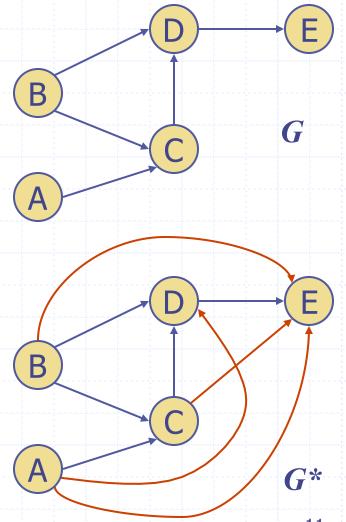
Strongly Connected Components

- Maximal subgraphs such that each vertex can reach all other vertices in the subgraph
- Can also be done in O(n+m) time using DFS, but is more complicated (similar to biconnectivity).



Transitive Closure

- Given a digraph G, the transitive closure of G is the digraph G* such that
 - G* has the same vertices as G
 - if G has a directed path from u to v (u ≠ v), G* has a directed edge from u to v
- The transitive closure provides reachability information about a digraph



Computing the Transitive Closure

We can perform
 DFS starting at
 each vertex
 O(n(n+m))

If there's a way to get from A to B and from B to C, then there's a way to get from A to C.

Alternatively ... Use dynamic programming: The Floyd-Warshall Algorithm

WW.GENIUS COM

Floyd-Warshall Transitive Closure

- Idea #1: Number the vertices 1, 2, ..., n.
- Idea #2: Consider paths that use only vertices numbered 1, 2, ..., k, as intermediate vertices:

Uses only vertices numbered 1,...,k (add this edge if it's not already in)

Uses only vertices numbered 1,...,k-1

Floyd-Warshall's Algorithm: High-Level View

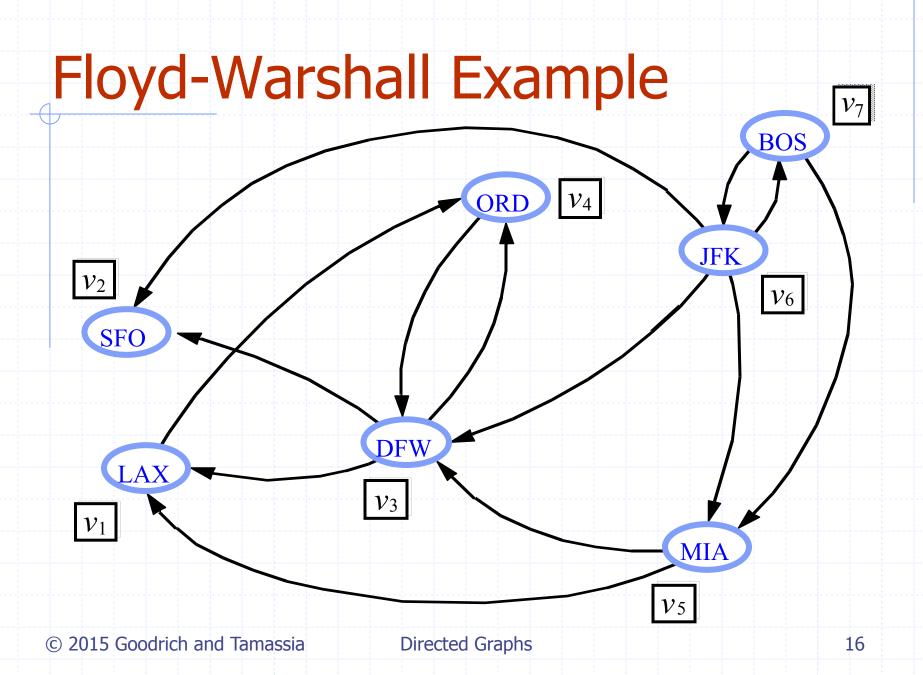
- $\Box \text{ Number vertices } v_1, ..., v_n$
- \Box Compute digraphs $G_0, ..., G_n$
 - **G**₀=**G**
 - G_k has directed edge (v_i, v_j) if G has a directed path from v_i to v_j with intermediate vertices in {v₁, ..., v_k}
- We have that $G_n = G^*$
- In phase k, digraph G_k is computed from G_{k-1}
 Running time: O(n³), assuming areAdjacent is O(1) (e.g., adjacency matrix)

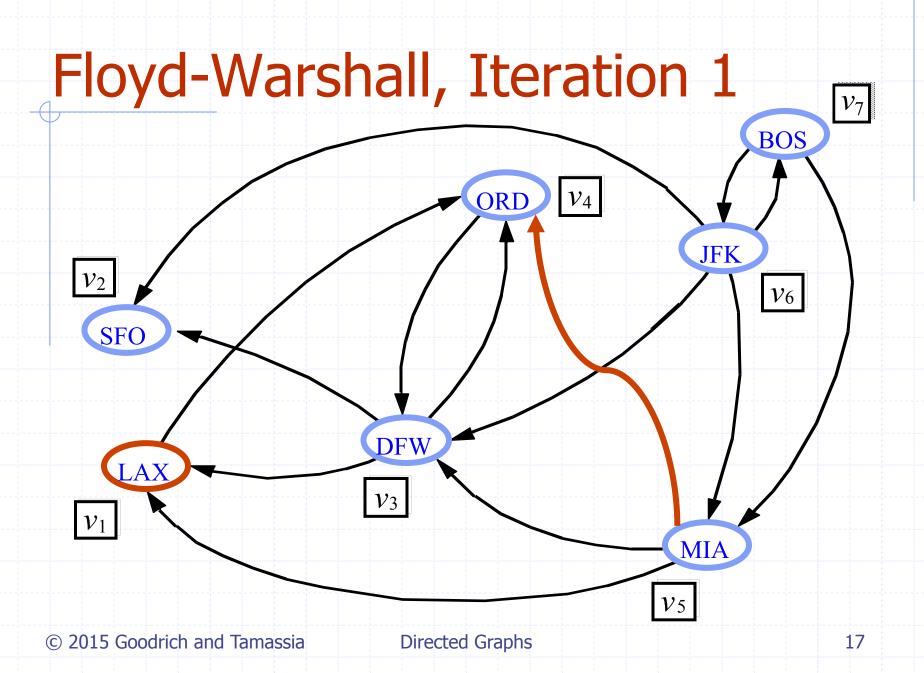
The Floyd-Warshall Algorithm

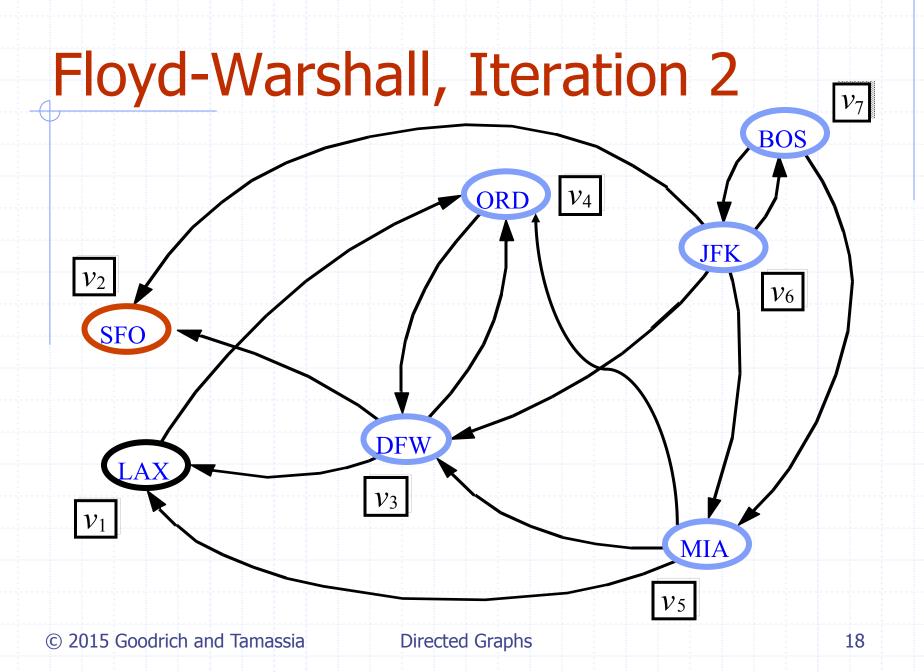
Algorithm FloydWarshall(\vec{G}): *Input:* A digraph \vec{G} with *n* vertices *Output:* The transitive closure \vec{G}^* of \vec{G} Let v_1, v_2, \ldots, v_n be an arbitrary numbering of the vertices of \vec{G} $\vec{G}_0 \leftarrow \vec{G}$ for $k \leftarrow 1$ to n do $\vec{G}_k \leftarrow \vec{G}_{k-1}$ for $i \leftarrow 1$ to $n, i \neq k$ do for $j \leftarrow 1$ to $n, j \neq i, k$ do if both edges (v_i, v_k) and (v_k, v_j) are in \vec{G}_{k-1} then if \vec{G}_k does not contain directed edge (v_i, v_j) then add directed edge (v_i, v_j) to \vec{G}_k return \vec{G}_n

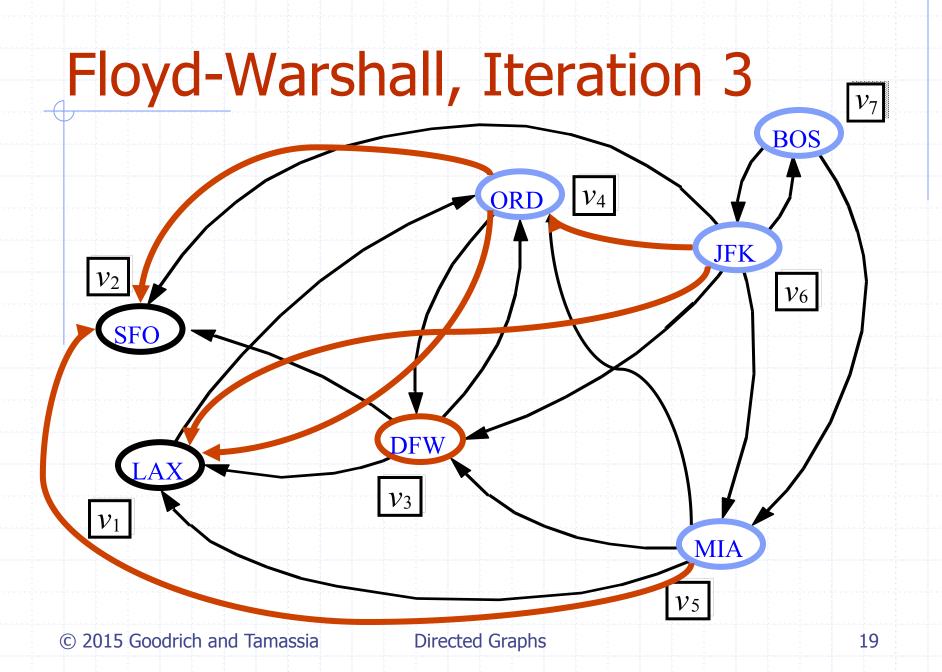
□ The running time is clearly O(n³).

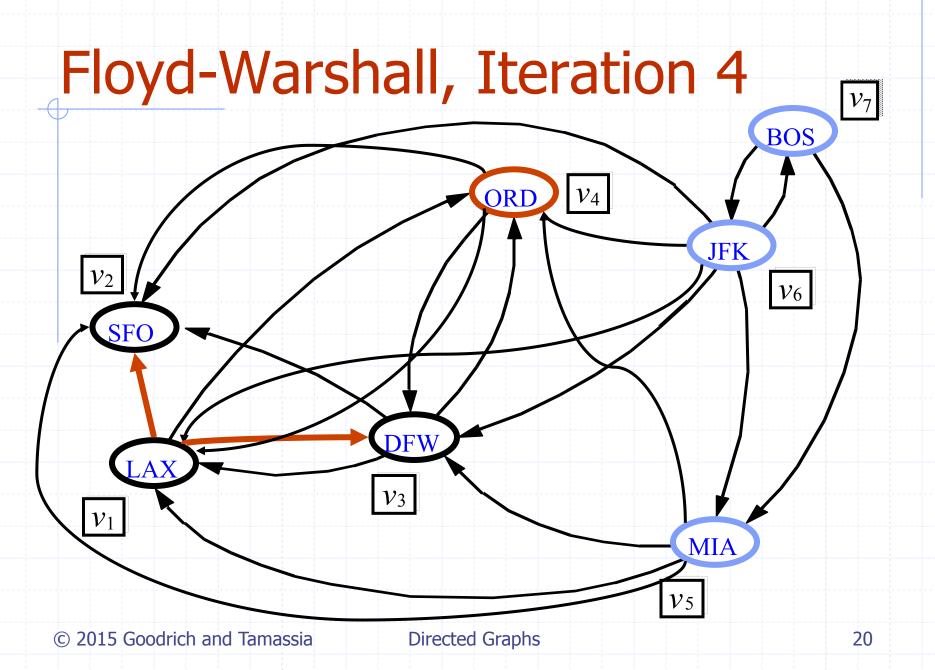
© 2015 Goodrich and Tamassia

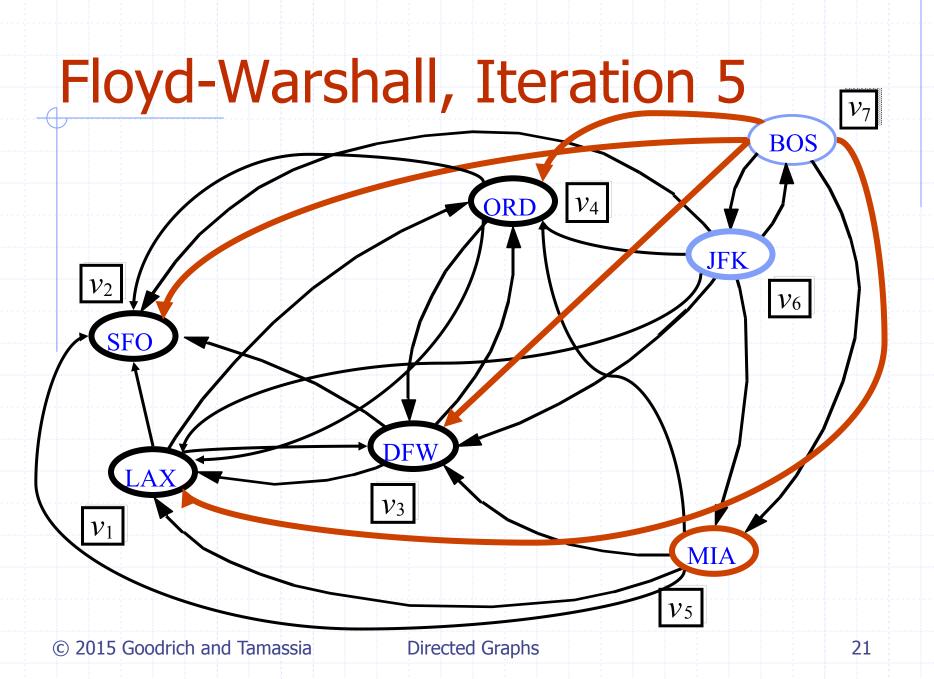


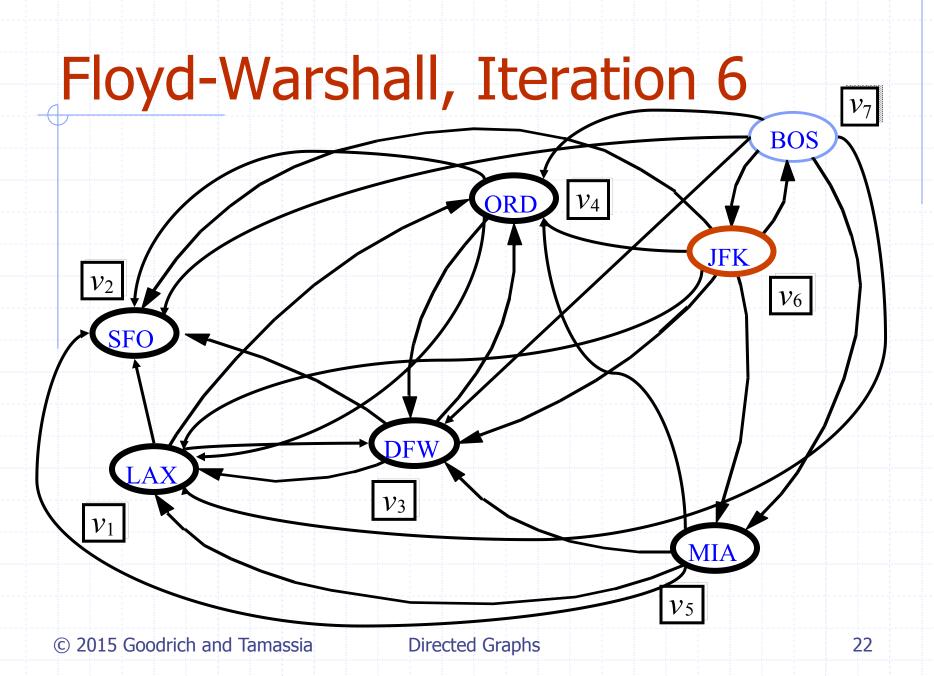


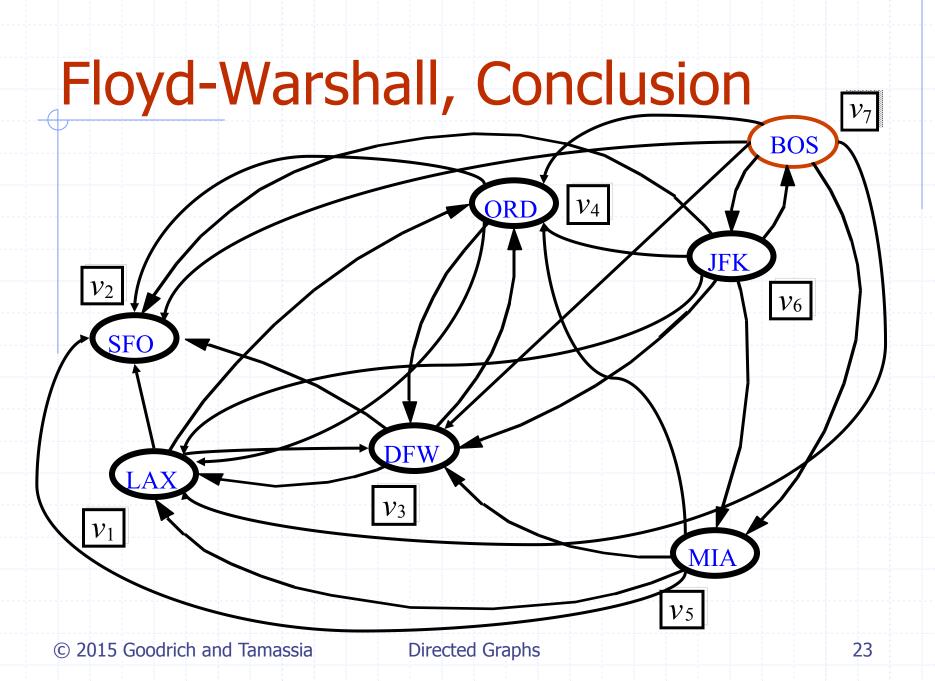




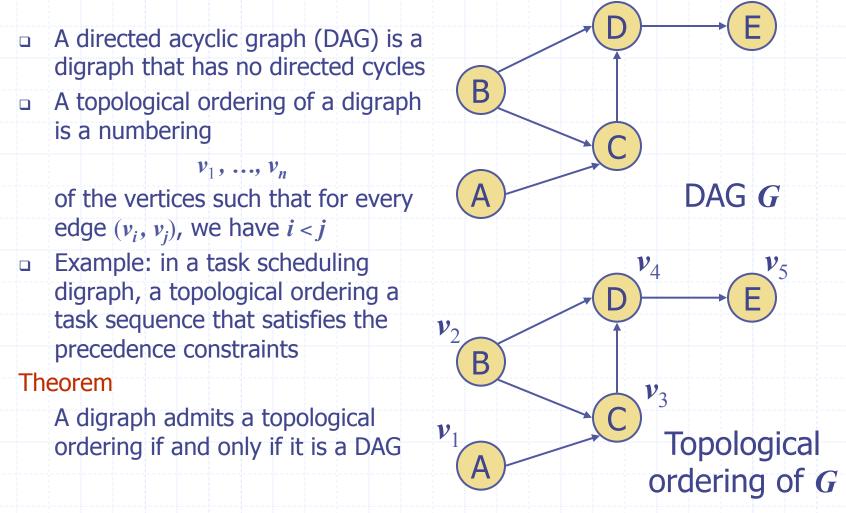








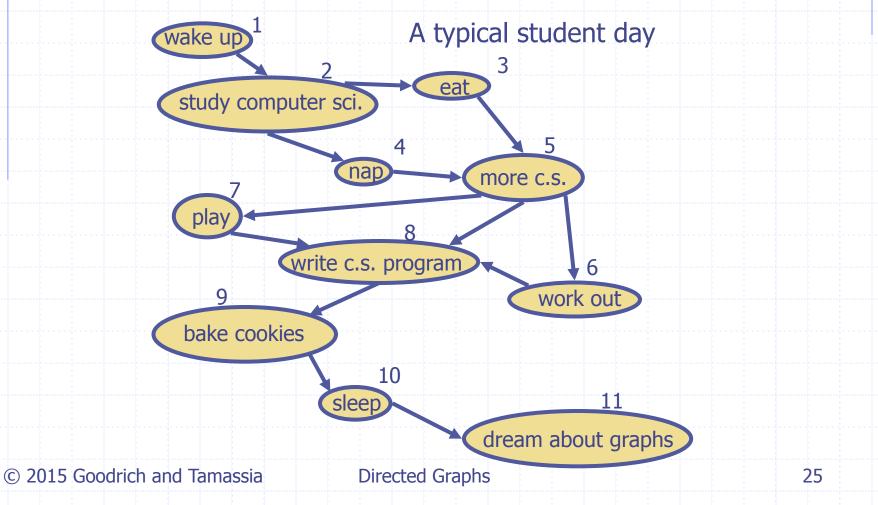
DAGs and Topological Ordering



© 2015 Goodrich and Tamassia

Topological Sorting

 \Box Number vertices, so that (u,v) in E implies u < v



Algorithm for Topological Sorting

 Note: This algorithm is different than the one in the book

Algorithm TopologicalSort(G) $H \leftarrow G$ // Temporary copy of G $n \leftarrow G.numVertices()$ while H is not empty doLet v be a vertex with no outgoing edgesLabel $v \leftarrow n$ $n \leftarrow n-1$ Remove v from H

Running time: O(n + m)

© 2015 Goodrich and Tamassia

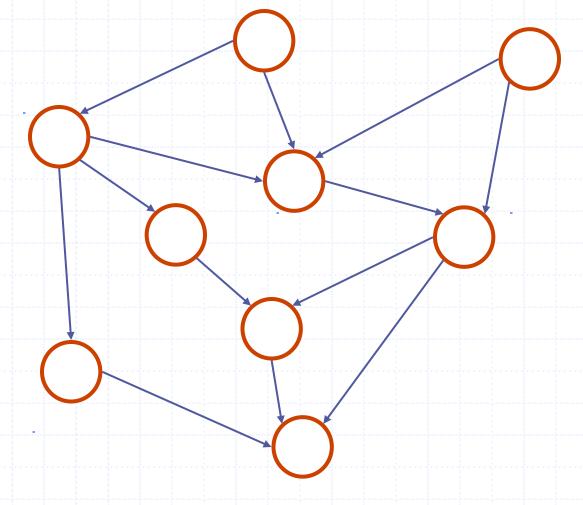
Implementation with DFS

- Simulate the algorithm by using depth-first search
- O(n+m) time.

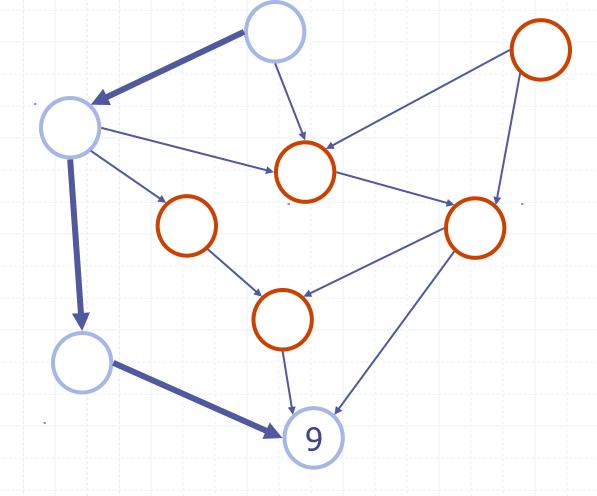
Algorithm topologicalDFS(G)Input dag GOutput topological ordering of G $n \leftarrow G.numVertices()$ for all $u \in G.vertices()$ setLabel(u, UNEXPLORED)for all $v \in G.vertices()$ if getLabel(v) = UNEXPLOREDtopologicalDFS(G, v)

Algorithm *topologicalDFS*(G, v) **Input** graph *G* and a start vertex *v* of *G* Output labeling of the vertices of G in the connected component of vsetLabel(v, VISITED) for all $e \in G.outEdges(v)$ { outgoing edges } $w \leftarrow opposite(v,e)$ **if** *getLabel*(*w*) = *UNEXPLORED* { *e* is a discovery edge } topologicalDFS(G, w) else { *e* is a forward or cross edge } Label *v* with topological number *n*

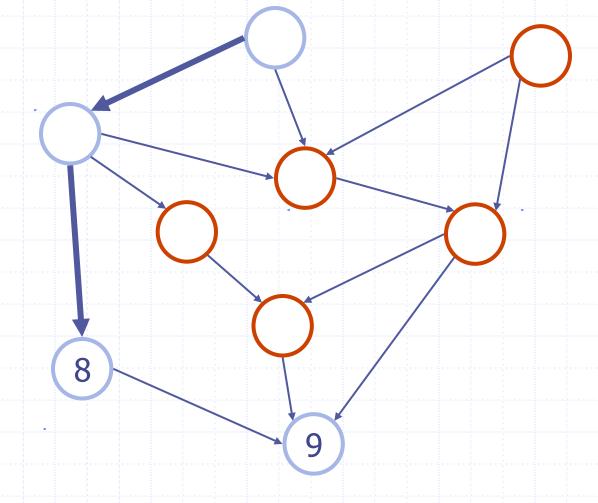
n ← *n* - 1



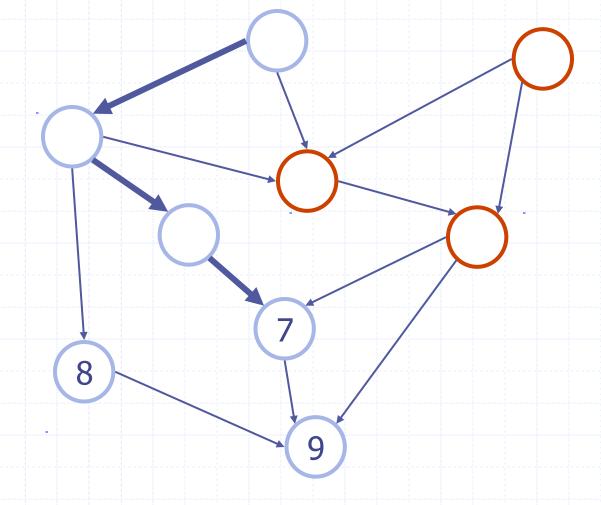
© 2015 Goodrich and Tamassia



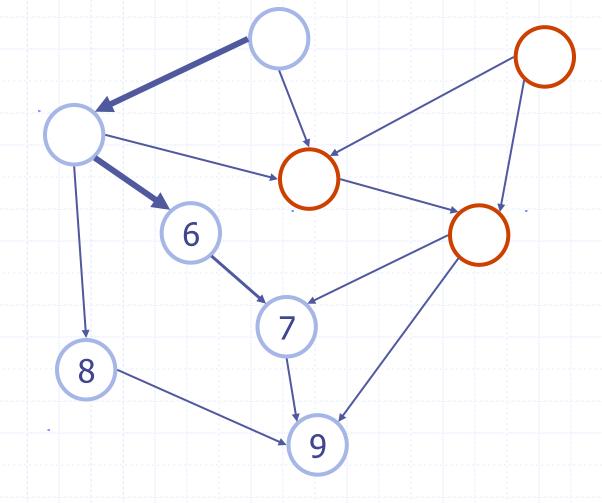
© 2015 Goodrich and Tamassia



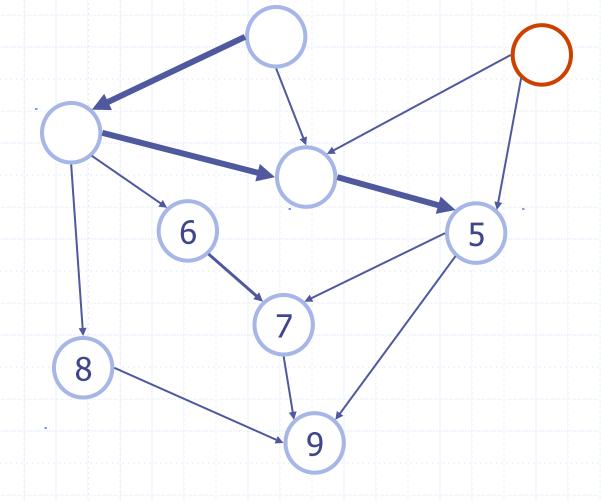
© 2015 Goodrich and Tamassia



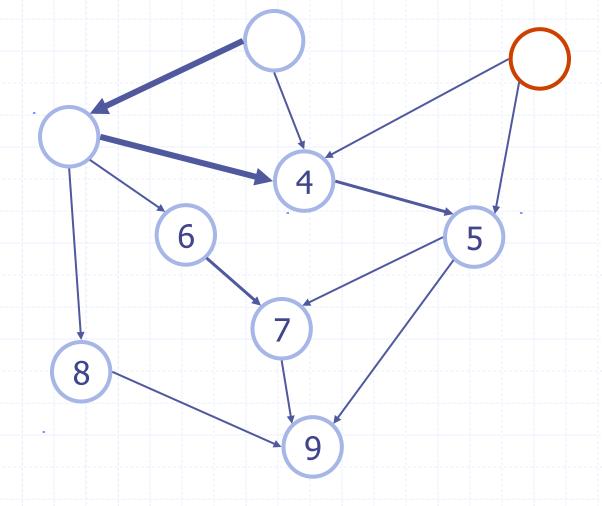
© 2015 Goodrich and Tamassia



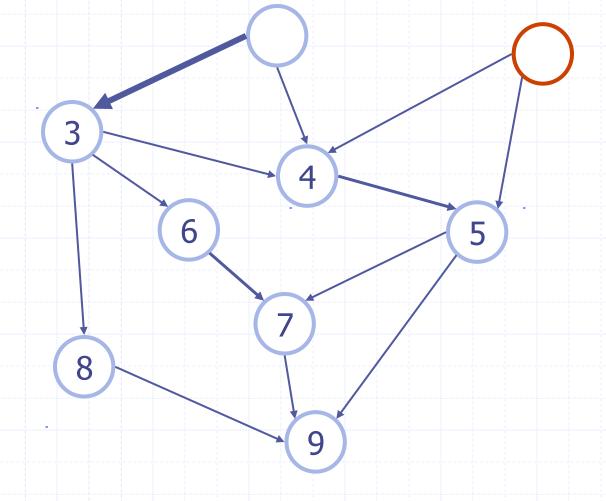
© 2015 Goodrich and Tamassia



© 2015 Goodrich and Tamassia



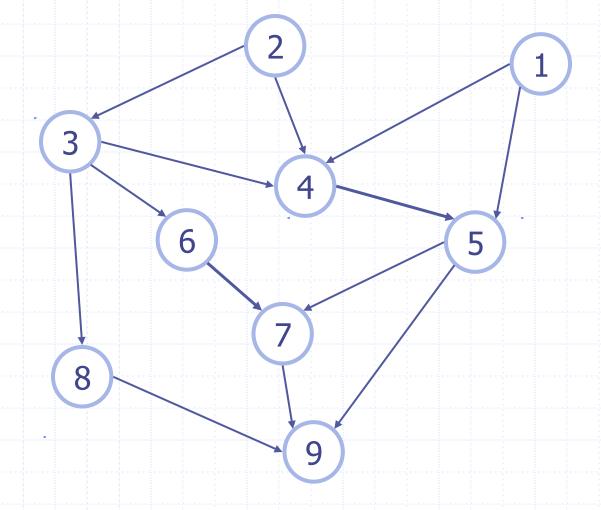
© 2015 Goodrich and Tamassia



© 2015 Goodrich and Tamassia



© 2015 Goodrich and Tamassia



© 2015 Goodrich and Tamassia