Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

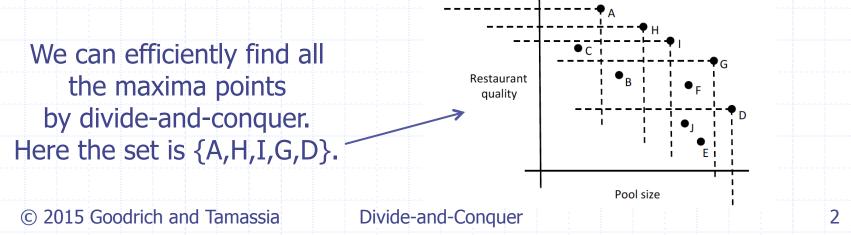
Divide-and-Conquer

Grand Canyon from South Rim, 1941. Ansel Adams. U.S. government image. U.S. National Archives and Records Administration.

© 2015 Goodrich and Tamassia

Application: Maxima Sets

- We can visualize the various trade-offs for optimizing twodimensional data, such as points representing hotels according to their pool size and restaurant quality, by plotting each as a twodimensional point, (x, y), where x is the pool size and y is the restaurant quality score.
- ♦ We say that such a point is a maximum point in a set if there is no other point, (x', y'), in that set such that x ≤ x' and y ≤ y'.
- The maximum points are the best potential choices based on these two dimensions and finding all of them is the maxima set problem.



- Divide-and conquer is a general algorithm design paradigm:
 - Divide: divide the input data S in two or more disjoint subsets S_1 , $S_{2}, ...$
 - Conquer: solve the subproblems recursively
 - Combine: combine the solutions for $S_1, S_2, ...,$ into a solution for S
- The base case for the recursion are subproblems of constant size
- Analysis can be done using recurrence equations © 2015 Goodrich and Tamassia Divide-and-Conquer

Merge-Sort Review

- Merge-sort on an input sequence S with n elements consists of three steps:
 - Divide: partition S into two sequences S₁ and S₂ of about n/2 elements each
 - Conquer: recursively sort
 S₁ and S₂
 - Combine: merge S₁ and S₂ into a unique sorted sequence

Algorithm mergeSort(S) Input sequence S with n elements Output sequence S sorted according to C if S.size() > 1 $(S_1, S_2) \leftarrow partition(S, n/2)$ mergeSort(S₁) mergeSort(S₂) $S \leftarrow merge(S_1, S_2)$

Recurrence Equation Analysis

The conquer step of merge-sort consists of merging two sorted sequences, each with n/2 elements and implemented by means of a doubly linked list, takes at most bn steps, for some constant b.
 Likewise, the basis case (n < 2) will take at b most steps.
 Therefore, if we let T(n) denote the running time of merge-sort:

$$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn & \text{if } n \ge 2 \end{cases}$$

We can therefore analyze the running time of merge-sort by finding a closed form solution to the above equation.
 That is, a solution that has *T(n)* only on the left-hand side.



Iterative Substitution

In the iterative substitution, or "plug-and-chug," technique, we iteratively apply the recurrence equation to itself and see if we can find a pattern: T(n) = 2T(n/2) + bn

$$= 2(2T(n/2^2)) + b(n/2)) + bn$$

$$=2^2T(n/2^2)+2bn$$

$$= 2^{3}T(n/2^{3}) + 3bn$$
$$= 2^{4}T(n/2^{4}) + 4bn$$

 $=2^{i}T(n/2^{i})+ibn$

=

• Note that base, T(n)=b, case occurs when $2^i=n$. That is, $i = \log n$. 🔶 So, $T(n) = bn + bn \log n$

• Thus, T(n) is $O(n \log n)$. © 2015 Goodrich and Tamassia Divide-and-Conquer

The Recursion Tree

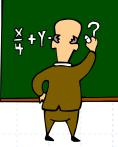
Draw the recursion tree for the recurrence relation and look for a pattern:

$$T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn & \text{if } n \ge 2 \end{cases}$$

depthT'ssizetime01nbn12n/2bni 2^i $n/2^i$ bn............

Total time = $bn + bn \log n$

(last level plus all previous levels)



Guess-and-Test Method

In the guess-and-test method, we guess a closed form solution and then try to prove it is true by induction:

 $T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn \log n & \text{if } n \ge 2 \end{cases}$

Guess: T(n) < cn log n.

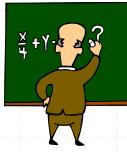
 $T(n) = 2T(n/2) + bn \log n$

 $= 2(c(n/2)\log(n/2)) + bn\log n$

 $= cn(\log n - \log 2) + bn\log n$

 $= cn \log n - cn + bn \log n$

Wrong: we cannot make this last line be less than cn log n



Guess-and-Test Method, (cont.)

Recall the recurrence equation: $T(n) = \begin{cases} b & \text{if } n < 2\\ 2T(n/2) + bn \log n & \text{if } n \ge 2 \end{cases}$ Guess #2: $T(n) < cn \log^2 n$. $T(n) = 2T(n/2) + bn \log n$ $= 2(c(n/2)\log^2(n/2)) + bn\log n$ $= cn(\log n - \log 2)^2 + bn\log n$ $= cn \log^2 n - 2cn \log n + cn + bn \log n$ $\leq cn \log^2 n$ ■ if c > b. So, T(n) is O(n log² n). In general, to use this method, you need to have a good guess and you need to be good at induction proofs.

Master Method

Many divide-and-conquer recurrence equations have the form:

$$T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$$

- The Master Theorem:
 - 1. if f(n) is $O(n^{\log_b a \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$
 - 2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$ 3. if f(n) is $\Omega(n^{\log_b a+\varepsilon})$, then T(n) is $\Theta(f(n))$,
 - provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

A CARE AND A CARE AND

Master Method, Example 1

• The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$

The Master Theorem:

1. if f(n) is $O(n^{\log_b a-\varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$

2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$

3. if f(n) is $\Omega(n^{\log_b a+\varepsilon})$, then T(n) is $\Theta(f(n))$,

provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

$$T(n) = 4T(n/2) + n$$

Solution: $\log_{b}a=2$, so case 1 says T(n) is O(n²).

The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$

The Master Theorem:

1. if f(n) is $O(n^{\log_b a - \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$

2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$

3. if f(n) is $\Omega(n^{\log_b a+\varepsilon})$, then T(n) is $\Theta(f(n))$,

provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$$T(n) = 2T(n/2) + n\log n$$

Solution: $\log_{b}a=1$, so case 2 says T(n) is O(n $\log^{2} n$).

• The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$

The Master Theorem:

1. if f(n) is $O(n^{\log_b a - \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$

2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$

3. if f(n) is $\Omega(n^{\log_b a+\varepsilon})$, then T(n) is $\Theta(f(n))$,

provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$$T(n) = T(n/3) + n\log n$$

Solution: $\log_{b}a=0$, so case 3 says T(n) is O(n log n).

• The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$

The Master Theorem:

1. if f(n) is $O(n^{\log_b a-\varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$

2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$

3. if f(n) is $\Omega(n^{\log_b a+\varepsilon})$, then T(n) is $\Theta(f(n))$,

provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$$T(n) = 8T(n/2) + n^2$$

Solution: $\log_{b}a=3$, so case 1 says T(n) is O(n³).

© 2015 Goodrich and Tamassia

NAT OF T

Master Method, Example 5

• The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$

The Master Theorem:

1. if f(n) is $O(n^{\log_b a-\varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$

2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$

3. if f(n) is $\Omega(n^{\log_b a+\varepsilon})$, then T(n) is $\Theta(f(n))$,

provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

$$T(n) = 9T(n/3) + n^3$$

Solution: $\log_{b}a=2$, so case 3 says T(n) is O(n³).

• The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$

The Master Theorem:

1. if f(n) is $O(n^{\log_b a-\varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$

2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$

3. if f(n) is $\Omega(n^{\log_b a+\varepsilon})$, then T(n) is $\Theta(f(n))$,

provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

T(n) = T(n/2) + 1 (binary search)

Solution: $\log_{b}a=0$, so case 2 says T(n) is O(log n).

• The form: $T(n) = \begin{cases} c & \text{if } n < d \\ aT(n/b) + f(n) & \text{if } n \ge d \end{cases}$

The Master Theorem:

1. if f(n) is $O(n^{\log_b a - \varepsilon})$, then T(n) is $\Theta(n^{\log_b a})$

2. if f(n) is $\Theta(n^{\log_b a} \log^k n)$, then T(n) is $\Theta(n^{\log_b a} \log^{k+1} n)$

3. if f(n) is $\Omega(n^{\log_b a+\varepsilon})$, then T(n) is $\Theta(f(n))$,

provided $af(n/b) \le \delta f(n)$ for some $\delta < 1$.

Example:

 $T(n) = 2T(n/2) + \log n$ (heap construction) Solution: $\log_{b}a=1$, so case 1 says T(n) is O(n).

Sketch of Proof of the Master Theorem

• Using iterative substitution, let us see if we can find a pattern: T(n) = aT(n/b) + f(n) $= a(aT(n/b^2)) + f(n/b)) + bn$ $= a^2T(n/b^2) + af(n/b) + f(n)$

 $= a^{3}T(n/b^{3}) + a^{2}f(n/b^{2}) + af(n/b) + f(n)$

$$= a^{\log_b n} T(1) + \sum_{i=0}^{(\log_b n)-1} a^i f(n/b^i)$$

$$= n^{\log_b a} T(1) + \sum_{i=0}^{\log_b a} a^i f(n/b^i)$$

We then distinguish the three cases as

= . . .

- The first term is dominant
- Each part of the summation is equally dominant
- The summation is a geometric series

© 2015 Goodrich and Tamassia

9[°] x 1

Integer Multiplication

◆ Algorithm: Multiply two n-bit integers I and J. ■ Divide step: Split I and J into high-order and low-order bits $I = I_h 2^{n/2} + I_l$ $J = J_h 2^{n/2} + J_l$

- We can then define I*J by multiplying the parts and adding: $I * J = (I_h 2^{n/2} + I_l) * (J_h 2^{n/2} + J_l)$ $= I_h J_h 2^n + I_h J_l 2^{n/2} + I_l J_h 2^{n/2} + I_l J_l$
- So, T(n) = 4T(n/2) + n, which implies T(n) is $O(n^2)$.
- But that is no better than the algorithm we learned in grade school.

An Improved Integer **Multiplication Algorithm**

Algorithm: Multiply two n-bit integers I and J. Divide step: Split I and J into high-order and low-order bits $I = I_{h} 2^{n/2} + I_{l}$ $J = J_{h} 2^{n/2} + J_{I}$ Observe that there is a different way to multiply parts: $I^*J = I_h J_h 2^n + [(I_h - I_I)(J_I - J_h) + I_h J_h + I_I J_I] 2^{n/2} + I_I J_I$ $= I_{h}J_{h}2^{n} + [(I_{h}J_{1} - I_{1}J_{1} - I_{h}J_{h} + I_{1}J_{h}) + I_{h}J_{h} + I_{1}J_{1}]2^{n/2} + I_{1}J_{1}$ $= I_{\mu}J_{\mu}2^{n} + (I_{\mu}J_{\mu} + I_{\mu}J_{\mu})2^{n/2} + I_{\mu}J_{\mu}$ • So, T(n) = 3T(n/2) + n, which implies T(n) is $O(n^{\log_2 3})$, by the Master Theorem. Thus, T(n) is O(n^{1.585}).

© 2015 Goodrich and Tamassia Divide-and-Conquer

Solving the Maxima Set Problem

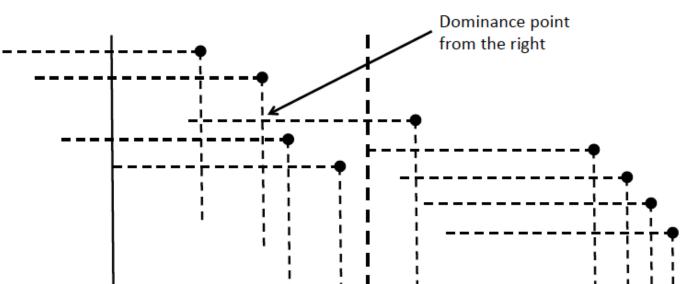
- Let us now return to the problem of finding a maxima set for a set, S, of n points in the plane.
- This problem is motivated from multi-objective optimization, where we are interested in optimizing choices that depend on multiple variables.
- For instance, in the introduction we used the example of someone wishing to optimize hotels based on the two variables of pool size and restaurant quality.
- ◆ A point is a **maximum point** in S if there is no other point, (x', y'), in S such that $x \le x'$ and $y \le y'$.

Divide-and-Conquer Solution

- Given a set, S, of n points in the plane, there is a simple divide-and-conquer algorithm for constructing the maxima set of points in S.
- If $n \leq 1$, the maxima set is just S itself.
- Otherwise, let p be the median point in S according to a lexicographic ordering of the points in S, that is, where we order based primarily on xcoordinates and then by y-coordinates if there are ties.
- Next, we recursively solve the maxima-set problem for the set of points on the left of this line and also for the points on the right.
- Given these solutions, the maxima set of points on the right are also maxima points for S.
- But some of the maxima points for the left set might be dominated by a point from the right, namely the point, q, that is leftmost.
- So then we do a scan of the left set of maxima, removing any points that are dominated by q, until reaching the point where q's dominance extends.
- The union of remaining set of maxima from the left and the maxima set from the right is the set of maxima for S.

© 2015 Goodrich and Tamassia

Example for the Combine Step



Pseudo-code

```
Algorithm MaximaSet(S):
```

Input: A set, S, of n points in the plane *Output:* The set, M, of maxima points in S

if $n \le 1$ then return S

Let p be the median point in S, by lexicographic (x, y)-coordinates Let L be the set of points lexicographically less than p in SLet G be the set of points lexicographically greater than or equal to p in S $M_1 \leftarrow \text{MaximaSet}(L)$ $M_2 \leftarrow \text{MaximaSet}(G)$ Let q be the lexicographically smallest point in M_2 for each point, r, in M_1 do if $x(r) \leq x(q)$ and $y(r) \leq y(q)$ then Remove r from M_1 return $M_1 \cup M_2$

A Little Implementation Detail

- Before we analyze the divide-and-conquer maxima-set algorithm, there is a little implementation detail that we need to work out.
- Namely, there is the issue of how to efficiently find the point, p, that is the median point in a lexicographical ordering of the points in S according to their (x, y)-coordinates.

There are two immediate possibilities:

One choice is to use a linear-time median-finding algorithm, such as that given in Section 9.2. This achieves a good asymptotic running time, but adds some implementation complexity.

 Another choice is to sort the points in S lexicographically by their (x, y)-coordinates as a preprocessing step, prior to calling the MaxmaSet algorithm on S. Given this preprocessing step, the median point is simply the point in the middle of the list.

Analysis

In either case, the rest of the non-recursive steps can be performed in O(n) time, so this implies that, ignoring floor and ceiling functions (as allowed by the analysis of Exercise C-11.5), the running time for the divide-and-conquer maxima-set algorithm can be specified as follows (where b is a constant):

$$T(n) = \begin{cases} D & \text{if } n < 2\\ 2T(n/2) + bn & \text{if } n \ge 2 \end{cases}$$

1.

C

:c)

Thus, according to the Master Theorem, this algorithm runs in O(n log n) time.