
© 2015 Goodrich and Tamassia Divide-and-Conquer 1

Divide-and-Conquer

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

© 2015 Goodrich and Tamassia

Application: Maxima Sets
We can visualize the various trade-offs for optimizing two-
dimensional data, such as points representing hotels according to
their pool size and restaurant quality, by plotting each as a two-
dimensional point, (x, y), where x is the pool size and y is the
restaurant quality score.
We say that such a point is a maximum point in a set if there is no
other point, (x′, y′), in that set such that x ≤ x′ and y ≤ y′.
The maximum points are the best potential choices based on these
two dimensions and finding all of them is the maxima set problem.

Divide-and-Conquer 2

We can efficiently find all
the maxima points

by divide-and-conquer.
Here the set is {A,H,I,G,D}.

© 2015 Goodrich and Tamassia Divide-and-Conquer 3

Divide-and-Conquer
Divide-and conquer is a
general algorithm design
paradigm:
n  Divide: divide the input data S in

two or more disjoint subsets S1,
S2, …

n  Conquer: solve the subproblems
recursively

n  Combine: combine the solutions
for S1, S2, …, into a solution for S

The base case for the
recursion are subproblems of
constant size
Analysis can be done using
recurrence equations

© 2015 Goodrich and Tamassia Divide-and-Conquer 4

Merge-Sort Review
Merge-sort on an input
sequence S with n
elements consists of
three steps:
n  Divide: partition S into

two sequences S1 and S2
of about n/2 elements
each

n  Conquer: recursively sort
S1 and S2

n  Combine: merge S1 and
S2 into a unique sorted
sequence

Algorithm mergeSort(S)
 Input sequence S with n
 elements
 Output sequence S sorted

 according to C
if S.size() > 1

 (S1, S2) ← partition(S, n/2)
 mergeSort(S1)
 mergeSort(S2)
 S ← merge(S1, S2)

© 2015 Goodrich and Tamassia Divide-and-Conquer 5

Recurrence Equation Analysis
The conquer step of merge-sort consists of merging two sorted
sequences, each with n/2 elements and implemented by means of
a doubly linked list, takes at most bn steps, for some constant b.
Likewise, the basis case (n < 2) will take at b most steps.
Therefore, if we let T(n) denote the running time of merge-sort:

We can therefore analyze the running time of merge-sort by
finding a closed form solution to the above equation.
n  That is, a solution that has T(n) only on the left-hand side.

⎩
⎨
⎧

≥+

<
=

2if)2/(2
2if

)(
nbnnT
nb

nT

© 2015 Goodrich and Tamassia Divide-and-Conquer 6

Iterative Substitution
In the iterative substitution, or “plug-and-chug,” technique, we
iteratively apply the recurrence equation to itself and see if we can
find a pattern:

Note that base, T(n)=b, case occurs when 2i=n. That is, i = log n.
So,

Thus, T(n) is O(n log n).

ibnnT

bnnT
bnnT
bnnT

bnnbnT
bnnTnT

ii +=

=

+=

+=

+=

++=

+=

)2/(2
...

4)2/(2
3)2/(2
2)2/(2

))2/())2/(2(2
)2/(2)(

44

33

22

2

nbnbnnT log)(+=

© 2015 Goodrich and Tamassia Divide-and-Conquer 7

The Recursion Tree
Draw the recursion tree for the recurrence relation and look for a
pattern:

depth T’s size

0 1 n

1 2 n/2

i 2i n/2i

… … …

⎩
⎨
⎧

≥+

<
=

2if)2/(2
2if

)(
nbnnT
nb

nT

time

bn

bn

bn

…

Total time = bn + bn log n
(last level plus all previous levels)

© 2015 Goodrich and Tamassia Divide-and-Conquer 8

Guess-and-Test Method
In the guess-and-test method, we guess a closed form solution
and then try to prove it is true by induction:

Guess: T(n) < cn log n.

Wrong: we cannot make this last line be less than cn log n

nbncnncn
nbnncn
nbnnnc

nbnnTnT

loglog
log)2log(log
log))2/log()2/((2

log)2/(2)(

+−=

+−=

+=

+=

⎩
⎨
⎧

≥+

<
=

2iflog)2/(2
2if

)(
nnbnnT
nb

nT

© 2015 Goodrich and Tamassia Divide-and-Conquer 9

Guess-and-Test Method, (cont.)
Recall the recurrence equation:

Guess #2: T(n) < cn log2 n.

n  if c > b.
So, T(n) is O(n log2 n).
In general, to use this method, you need to have a good guess
and you need to be good at induction proofs.

ncn
nbncnncnncn

nbnncn
nbnnnc

nbnnTnT

2

2

2

2

log
loglog2log

log)2log(log
log))2/(log)2/((2

log)2/(2)(

≤

++−=

+−=

+=

+=

⎩
⎨
⎧

≥+

<
=

2iflog)2/(2
2if

)(
nnbnnT
nb

nT

© 2015 Goodrich and Tamassia Divide-and-Conquer 10

Master Method
Many divide-and-conquer recurrence equations have
the form:

The Master Theorem:

⎩
⎨
⎧

≥+

<
=

dnnfbnaT
dnc

nT
if)()/(
if

)(

.1 somefor)()/(provided
)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog

<≤

ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

© 2015 Goodrich and Tamassia Divide-and-Conquer 11

Master Method, Example 1
The form:

The Master Theorem:

Example:

⎩
⎨
⎧

≥+

<
=

dnnfbnaT
dnc

nT
if)()/(
if

)(

.1 somefor)()/(provided
)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog

<≤

ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

nnTnT +=)2/(4)(
Solution: logba=2, so case 1 says T(n) is O(n2).

© 2015 Goodrich and Tamassia Divide-and-Conquer 12

Master Method, Example 2
The form:

The Master Theorem:

Example:

⎩
⎨
⎧

≥+

<
=

dnnfbnaT
dnc

nT
if)()/(
if

)(

.1 somefor)()/(provided
)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog

<≤

ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

nnnTnT log)2/(2)(+=
Solution: logba=1, so case 2 says T(n) is O(n log2 n).

© 2015 Goodrich and Tamassia Divide-and-Conquer 13

Master Method, Example 3
The form:

The Master Theorem:

Example:

⎩
⎨
⎧

≥+

<
=

dnnfbnaT
dnc

nT
if)()/(
if

)(

.1 somefor)()/(provided
)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog

<≤

ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

nnnTnT log)3/()(+=
Solution: logba=0, so case 3 says T(n) is O(n log n).

© 2015 Goodrich and Tamassia Divide-and-Conquer 14

Master Method, Example 4
The form:

The Master Theorem:

Example:

⎩
⎨
⎧

≥+

<
=

dnnfbnaT
dnc

nT
if)()/(
if

)(

.1 somefor)()/(provided
)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog

<≤

ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

2)2/(8)(nnTnT +=
Solution: logba=3, so case 1 says T(n) is O(n3).

© 2015 Goodrich and Tamassia Divide-and-Conquer 15

Master Method, Example 5
The form:

The Master Theorem:

Example:

⎩
⎨
⎧

≥+

<
=

dnnfbnaT
dnc

nT
if)()/(
if

)(

.1 somefor)()/(provided
)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog

<≤

ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

3)3/(9)(nnTnT +=
Solution: logba=2, so case 3 says T(n) is O(n3).

© 2015 Goodrich and Tamassia Divide-and-Conquer 16

Master Method, Example 6
The form:

The Master Theorem:

Example:

⎩
⎨
⎧

≥+

<
=

dnnfbnaT
dnc

nT
if)()/(
if

)(

.1 somefor)()/(provided
)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog

<≤

ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

1)2/()(+= nTnT
Solution: logba=0, so case 2 says T(n) is O(log n).

(binary search)

© 2015 Goodrich and Tamassia Divide-and-Conquer 17

Master Method, Example 7
The form:

The Master Theorem:

Example:

⎩
⎨
⎧

≥+

<
=

dnnfbnaT
dnc

nT
if)()/(
if

)(

.1 somefor)()/(provided
)),((is)(then),(is)(if 3.

)log(is)(then),log(is)(if 2.

)(is)(then),(is)(if 1.

log

1loglog

loglog

<≤

ΘΩ

ΘΘ

Θ

+

+

−

δδ

ε

ε

nfbnaf
nfnTnnf

nnnTnnnf
nnTnOnf

a

kaka

aa

b

bb

bb

nnTnT log)2/(2)(+=
Solution: logba=1, so case 1 says T(n) is O(n).

(heap construction)

© 2015 Goodrich and Tamassia Divide-and-Conquer 18

Sketch of Proof of the Master
Theorem

Using iterative substitution, let us see if we can find a pattern:

We then distinguish the three cases as
n  The first term is dominant
n  Each part of the summation is equally dominant
n  The summation is a geometric series

∑

∑
−

=

−

=

+=

+=

=

+++=

++=

++=

+=

1)(log

0

log

1)(log

0

log

2233

22

2

)/()1(

)/()1(

. . .
)()/()/()/(

)()/()/(
))/())/((

)()/()(

n

i

iia

n

i

iin

b
b

b
b

bnfaTn

bnfaTa

nfbnafbnfabnTa
nfbnafbnTa
bnbnfbnaTa

nfbnaTnT

© 2015 Goodrich and Tamassia Divide-and-Conquer 19

Integer Multiplication
Algorithm: Multiply two n-bit integers I and J.
n  Divide step: Split I and J into high-order and low-order bits

n  We can then define I*J by multiplying the parts and adding:

n  So, T(n) = 4T(n/2) + n, which implies T(n) is O(n2).
n  But that is no better than the algorithm we learned in grade

school.

l
n

h

l
n

h

JJJ
III
+=

+=
2/

2/

2

2

ll
n

hl
n

lh
n

hh

l
n

hl
n

h

JIJIJIJI
JJIIJI

+++=

++=
2/2/

2/2/

222

)2(*)2(*

© 2015 Goodrich and Tamassia Divide-and-Conquer 20

An Improved Integer
Multiplication Algorithm

Algorithm: Multiply two n-bit integers I and J.
n  Divide step: Split I and J into high-order and low-order bits

n  Observe that there is a different way to multiply parts:

n  So, T(n) = 3T(n/2) + n, which implies T(n) is O(nlog
2
3), by

the Master Theorem.
n  Thus, T(n) is O(n1.585).

l
n

h

l
n

h

JJJ
III
+=

+=
2/

2/

2

2

ll
n

hllh
n

hh

ll
n

llhhhlhhlllh
n

hh

ll
n

llhhhllh
n

hh

JIJIJIJI
JIJIJIJIJIJIJIJI

JIJIJIJJIIJIJI

+++=

++++−−+=

+++−−+=

2/

2/

2/

2)(2

2])[(2

2]))([(2*

© 2015 Goodrich and Tamassia

Solving the Maxima Set Problem
Let us now return to the problem of finding a
maxima set for a set, S, of n points in the plane.
This problem is motivated from multi-objective
optimization, where we are interested in optimizing
choices that depend on multiple variables.
For instance, in the introduction we used the example
of someone wishing to optimize hotels based on the
two variables of pool size and restaurant quality.
A point is a maximum point in S if there is no other
point, (x′, y′), in S such that x ≤ x′ and y ≤ y′.

Divide-and-Conquer 21

© 2015 Goodrich and Tamassia

Divide-and-Conquer Solution
Given a set, S, of n points in the plane, there is a simple divide-and-conquer
algorithm for constructing the maxima set of points in S.
If n ≤ 1, the maxima set is just S itself.
Otherwise, let p be the median point in S according to a lexicographic
ordering of the points in S, that is, where we order based primarily on x-
coordinates and then by y-coordinates if there are ties.
Next, we recursively solve the maxima-set problem for the set of points on
the left of this line and also for the points on the right.
Given these solutions, the maxima set of points on the right are also
maxima points for S.
But some of the maxima points for the left set might be dominated by a
point from the right, namely the point, q, that is leftmost.
So then we do a scan of the left set of maxima, removing any points that
are dominated by q, until reaching the point where q’s dominance extends.
The union of remaining set of maxima from the left and the maxima set
from the right is the set of maxima for S.

Divide-and-Conquer 22

© 2015 Goodrich and Tamassia

Example for the Combine Step

Divide-and-Conquer 23

© 2015 Goodrich and Tamassia

Pseudo-code

Divide-and-Conquer 24

© 2015 Goodrich and Tamassia

A Little Implementation Detail
Before we analyze the divide-and-conquer maxima-set algorithm,
there is a little implementation detail that we need to work out.
Namely, there is the issue of how to efficiently find the point, p,
that is the median point in a lexicographical ordering of the points
in S according to their (x, y)-coordinates.
There are two immediate possibilities:
One choice is to use a linear-time median-finding algorithm, such
as that given in Section 9.2. This achieves a good asymptotic
running time, but adds some implementation complexity.
Another choice is to sort the points in S lexicographically by their
(x, y)-coordinates as a preprocessing step, prior to calling the
MaxmaSet algorithm on S. Given this preprocessing step, the
median point is simply the point in the middle of the list.

Divide-and-Conquer 25

© 2015 Goodrich and Tamassia

Analysis
In either case, the rest of the non-recursive steps can
be performed in O(n) time, so this implies that,
ignoring floor and ceiling functions (as allowed by the
analysis of Exercise C-11.5), the running time for the
divide-and-conquer maxima-set algorithm can be
specified as follows (where b is a constant):

Thus, according to the Master Theorem, this algorithm
runs in O(n log n) time.

Divide-and-Conquer 26

⎩
⎨
⎧

≥+

<
=

2if)2/(2
2if

)(
nbnnT
nb

nT

