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Application: Maxima Sets 
We can visualize the various trade-offs for optimizing two-
dimensional data, such as points representing hotels according to 
their pool size and restaurant quality, by plotting each as a two-
dimensional point, (x, y), where x is the pool size and y is the 
restaurant quality score.  
We say that such a point is a maximum point in a set if there is no 
other point, (x′, y′), in that set such that x ≤ x′ and y ≤ y′. 
The maximum points are the best potential choices based on these 
two dimensions and finding all of them is the maxima set problem. 
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We can efficiently find all 
the maxima points 

by divide-and-conquer. 
Here the set is {A,H,I,G,D}. 
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Divide-and-Conquer 
Divide-and conquer is a 
general algorithm design 
paradigm: 
n  Divide: divide the input data S in 

two or more disjoint subsets S1, 
S2, … 

n  Conquer: solve the subproblems 
recursively 

n  Combine: combine the solutions 
for S1, S2, …, into a solution for S 

The base case for the 
recursion are subproblems of 
constant size 
Analysis can be done using 
recurrence equations 



© 2015 Goodrich and Tamassia Divide-and-Conquer 4 

Merge-Sort Review 
Merge-sort on an input 
sequence S with n 
elements consists of 
three steps: 
n  Divide: partition S into 

two sequences S1 and S2 
of about n/2 elements 
each 

n  Conquer: recursively sort 
S1 and S2 

n  Combine: merge S1 and 
S2 into a unique sorted 
sequence 

Algorithm mergeSort(S) 
 Input sequence S with n 
     elements  
 Output sequence S sorted 

 according to C 
if S.size() > 1 

 (S1, S2) ← partition(S, n/2)  
 mergeSort(S1) 
 mergeSort(S2) 
 S ← merge(S1, S2) 
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Recurrence Equation Analysis 
The conquer step of merge-sort consists of merging two sorted 
sequences, each with n/2 elements and implemented by means of 
a doubly linked list, takes at most bn steps, for some constant b. 
Likewise, the basis case (n < 2) will take at b most steps. 
Therefore, if we let T(n) denote the running time of merge-sort: 

We can therefore analyze the running time of merge-sort by 
finding a closed form solution to the above equation. 
n  That is, a solution that has T(n) only on the left-hand side. 
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Iterative Substitution 
In the iterative substitution, or “plug-and-chug,” technique, we 
iteratively apply the recurrence equation to itself and see if we can 
find a pattern: 

Note that base, T(n)=b, case occurs when 2i=n. That is, i = log n.  
So, 

Thus, T(n) is O(n log n). 
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The Recursion Tree 
Draw the recursion tree for the recurrence relation and look for a 
pattern:  

depth T’s size 

0 1 n 

1 2 n/2 

i 2i n/2i 

… … … 
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Total time = bn + bn log n 
(last level plus all previous levels) 
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Guess-and-Test Method 
In the guess-and-test method, we guess a closed form solution 
and then try to prove it is true by induction: 

Guess: T(n) < cn log n. 

Wrong: we cannot make this last line be less than cn log n 
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Guess-and-Test Method, (cont.) 
Recall the recurrence equation: 

Guess #2: T(n) < cn log2 n. 

n  if c > b. 
So, T(n) is O(n log2 n). 
In general, to use this method, you need to have a good guess 
and you need to be good at induction proofs. 
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Master Method 
Many divide-and-conquer recurrence equations have 
the form: 

 
 

The Master Theorem: 
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Master Method, Example 1 
The form: 

The Master Theorem: 

 

Example: 
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Solution: logba=2, so case 1 says T(n) is O(n2). 
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Master Method, Example 2 
The form: 

The Master Theorem: 

 

Example: 
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Solution: logba=1, so case 2 says T(n) is O(n log2 n). 
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Master Method, Example 3 
The form: 

The Master Theorem: 

 

Example: 
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Solution: logba=0, so case 3 says T(n) is O(n log n). 
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Master Method, Example 4 
The form: 

The Master Theorem: 

 

Example: 
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Solution: logba=3, so case 1 says T(n) is O(n3). 
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Master Method, Example 5 
The form: 

The Master Theorem: 

 

Example: 
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Solution: logba=2, so case 3 says T(n) is O(n3). 
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Master Method, Example 6 
The form: 

The Master Theorem: 

 

Example: 
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Solution: logba=0, so case 2 says T(n) is O(log n). 

(binary search) 
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Master Method, Example 7 
The form: 

The Master Theorem: 

 

Example: 
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Solution: logba=1, so case 1 says T(n) is O(n). 

(heap construction) 
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Sketch of Proof of the Master 
Theorem 

Using iterative substitution, let us see if we can find a pattern: 

 
We then distinguish the three cases as 
n  The first term is dominant 
n  Each part of the summation is equally dominant 
n  The summation is a geometric series 
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Integer Multiplication 
Algorithm: Multiply two n-bit integers I and J. 
n  Divide step: Split I and J into high-order and low-order bits 

n  We can then define I*J by multiplying the parts and adding: 

n  So, T(n) = 4T(n/2) + n, which implies T(n) is O(n2). 
n  But that is no better than the algorithm we learned in grade 

school. 
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An Improved Integer 
Multiplication Algorithm 

Algorithm: Multiply two n-bit integers I and J. 
n  Divide step: Split I and J into high-order and low-order bits 

n  Observe that there is a different way to multiply parts: 

n  So, T(n) = 3T(n/2) + n, which implies T(n) is O(nlog
2
3), by 

the Master Theorem. 
n  Thus, T(n) is O(n1.585). 
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Solving the Maxima Set Problem 
Let us now return to the problem of finding a 
maxima set for a set, S, of n points in the plane.  
This problem is motivated from multi-objective 
optimization, where we are interested in optimizing 
choices that depend on multiple variables.  
For instance, in the introduction we used the example 
of someone wishing to optimize hotels based on the 
two variables of pool size and restaurant quality.  
A point is a maximum point in S if there is no other 
point, (x′, y′), in S such that x ≤ x′ and y ≤ y′. 
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Divide-and-Conquer Solution 
Given a set, S, of n points in the plane, there is a simple divide-and-conquer 
algorithm for constructing the maxima set of points in S.  
If n ≤ 1, the maxima set is just S itself.  
Otherwise, let p be the median point in S according to a lexicographic 
ordering of the points in S, that is, where we order based primarily on x-
coordinates and then by y-coordinates if there are ties.  
Next, we recursively solve the maxima-set problem for the set of points on 
the left of this line and also for the points on the right.  
Given these solutions, the maxima set of points on the right are also 
maxima points for S.  
But some of the maxima points for the left set might be dominated by a 
point from the right, namely the point, q, that is leftmost.  
So then we do a scan of the left set of maxima, removing any points that 
are dominated by q, until reaching the point where q’s dominance extends. 
The union of remaining set of maxima from the left and the maxima set 
from the right is the set of maxima for S. 
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Example for the Combine Step 
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© 2015 Goodrich and Tamassia 

Pseudo-code 
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A Little Implementation Detail 
Before we analyze the divide-and-conquer maxima-set algorithm, 
there is a little implementation detail that we need to work out.  
Namely, there is the issue of how to efficiently find the point, p, 
that is the median point in a lexicographical ordering of the points 
in S according to their (x, y)-coordinates.  
There are two immediate possibilities:  
One choice is to use a linear-time median-finding algorithm, such 
as that given in Section 9.2. This achieves a good asymptotic 
running time, but adds some implementation complexity.  
Another choice is to sort the points in S lexicographically by their 
(x, y)-coordinates as a preprocessing step, prior to calling the 
MaxmaSet algorithm on S. Given this preprocessing step, the 
median point is simply the point in the middle of the list. 
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Analysis 
In either case, the rest of the non-recursive steps can 
be performed in O(n) time, so this implies that, 
ignoring floor and ceiling functions (as allowed by the 
analysis of Exercise C-11.5), the running time for the 
divide-and-conquer maxima-set algorithm can be 
specified as follows (where b is a constant): 

Thus, according to the Master Theorem, this algorithm 
runs in O(n log n) time. 
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