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Dynamic Programming 

Presentation for use with the textbook, Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 
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Application: DNA Sequence 
Alignment 

DNA sequences can be viewed as strings of 
A, C, G, and T characters, which represent 
nucleotides. 
Finding the similarities between two DNA 
sequences is an important computation 
performed in bioinformatics.  
n  For instance, when comparing the DNA of 

different organisms, such alignments can highlight 
the locations where those organisms have 
identical DNA patterns. 
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Application: DNA Sequence 
Alignment 

Finding the best alignment between two DNA strings 
involves minimizing the number of changes to 
convert one string to the other. 

 
 
 

A brute-force search would take exponential time, 
but we can do much better using dynamic 
programming. 
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Warm-up: Matrix Chain-Products 
Dynamic Programming is a general 
algorithm design paradigm. 
n  Rather than give the general structure, let us 

first give a motivating example: 
n  Matrix Chain-Products 

Review: Matrix Multiplication. 
n  C = A*B 
n  A is d × e and B is e × f 

n  O(def ) time 
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Matrix Chain-Products 
Matrix Chain-Product: 
n  Compute A=A0*A1*…*An-1 
n  Ai is di × di+1 

n  Problem: How to parenthesize? 
Example 
n  B is 3 × 100 
n  C is 100 × 5 
n  D is 5 × 5 
n  (B*C)*D takes 1500 + 75 = 1575 ops 
n  B*(C*D) takes 1500 + 2500 = 4000 ops 
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An Enumeration Approach 
Matrix Chain-Product Alg.: 
n  Try all possible ways to parenthesize 

A=A0*A1*…*An-1 

n  Calculate number of ops for each one 
n  Pick the one that is best 

Running time: 
n  The number of paranethesizations is equal 

to the number of binary trees with n nodes 
n  This is exponential! 
n  It is called the Catalan number, and it is 

almost 4n. 
n  This is a terrible algorithm! 
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A Greedy Approach 
Idea #1: repeatedly select the product that 
uses (up) the most operations. 
Counter-example:  
n  A is 10 × 5 
n  B is 5 × 10 
n  C is 10 × 5 
n  D is 5 × 10 
n  Greedy idea #1 gives (A*B)*(C*D), which takes 

500+1000+500 = 2000 ops 
n  A*((B*C)*D) takes 500+250+250 = 1000 ops 
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Another Greedy Approach 
Idea #2: repeatedly select the product that uses 
the fewest operations. 
Counter-example:  
n  A is 101 × 11 
n  B is 11 × 9 
n  C is 9 × 100 
n  D is 100 × 99 
n  Greedy idea #2 gives A*((B*C)*D)), which takes 

109989+9900+108900=228789 ops 
n  (A*B)*(C*D) takes 9999+89991+89100=189090 ops 

The greedy approach is not giving us the optimal 
value. 
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A “Recursive” Approach 
Define subproblems: 
n  Find the best parenthesization of Ai*Ai+1*…*Aj. 
n  Let Ni,j denote the number of operations done by this 

subproblem. 
n  The optimal solution for the whole problem is N0,n-1. 

Subproblem optimality: The optimal solution can be 
defined in terms of optimal subproblems 
n  There has to be a final multiplication (root of the expression 

tree) for the optimal solution.   
n  Say, the final multiply is at index i: (A0*…*Ai)*(Ai+1*…*An-1). 
n  Then the optimal solution N0,n-1 is the sum of two optimal 

subproblems, N0,i and Ni+1,n-1 plus the time for the last multiply. 
n   If the global optimum did not have these optimal 

subproblems, we could define an even better “optimal” 
solution. 
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A Characterizing 
Equation 

The global optimal has to be defined in terms of 
optimal subproblems, depending on where the final 
multiply is at. 
Let us consider all possible places for that final multiply: 
n  Recall that Ai is a di × di+1 dimensional matrix. 
n  So, a characterizing equation for Ni,j is the following: 

Note that subproblems are not independent--the 
subproblems overlap. 
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A Dynamic Programming 
Algorithm 

Since subproblems 
overlap, we don’t 
use recursion. 
Instead, we 
construct optimal 
subproblems 
“bottom-up.”  
Ni,i’s are easy, so 
start with them 
Then do length 2,3,
… subproblems, and 
so on. 
The running time is 
O(n3) 

Algorithm matrixChain(S): 
 Input: sequence S of n matrices to be multiplied 
 Output: number of operations in an optimal   
  paranethization of S 
for i ← 1 to n-1 do 

 Ni,i ← 0  
for b ← 1 to n-1 do 

 for i ← 0 to n-b-1 do 
  j ← i+b 
   Ni,j ← +infinity 
  for k ← i to j-1 do 
    Ni,j ← min{Ni,j , Ni,k +Nk+1,j +di dk+1 dj+1} 
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A Dynamic Programming 
Algorithm Visualization 
The bottom-up 
construction fills in the 
N array by diagonals 
Ni,j gets values from 
pervious entries in i-th 
row and j-th column  
Filling in each entry in 
the N table takes O(n) 
time. 
Total run time: O(n3) 
Getting actual 
parenthesization can be 
done by remembering 
“k” for each N entry 
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The General Dynamic 
Programming Technique 

Applies to a problem that at first seems to 
require a lot of time (possibly exponential), 
provided we have: 
n  Simple subproblems: the subproblems can be 

defined in terms of a few variables, such as j, k, l, 
m, and so on. 

n  Subproblem optimality: the global optimum value 
can be defined in terms of optimal subproblems 

n  Subproblem overlap: the subproblems are not 
independent, but instead they overlap (hence, 
should be constructed bottom-up). 


