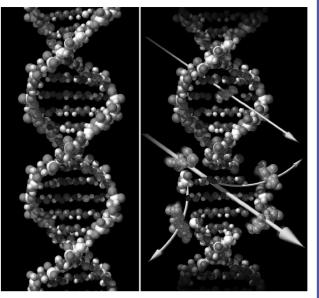
Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Dynamic Programming



Effects of radiation on DNA's double helix, 2003. U.S. government image. NASA-MSFC.

© 2015 Goodrich and Tamassia

Dynamic Programming

Application: DNA Sequence Alignment

- DNA sequences can be viewed as strings of A, C, G, and T characters, which represent nucleotides.
- Finding the similarities between two DNA sequences is an important computation performed in bioinformatics.
 - For instance, when comparing the DNA of different organisms, such alignments can highlight the locations where those organisms have identical DNA patterns.

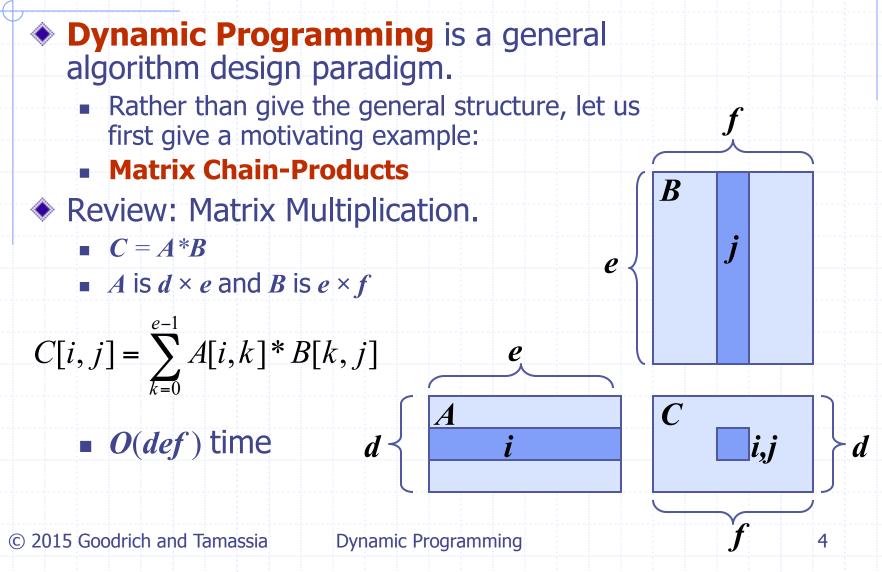
Application: DNA Sequence Alignment

Finding the best alignment between two DNA strings involves minimizing the number of changes to convert one string to the other.

Figure 12.1: Two DNA sequences, X and Y, and their alignment in terms of a longest subsequence, GTCGTCGGAAGCCGGCCGAA, that is common to these two strings.

 A brute-force search would take exponential time, but we can do much better using dynamic programming.

Warm-up: Matrix Chain-Products



Matrix Chain-Products

Matrix Chain-Product:

- Compute $A = A_0 * A_1 * \dots * A_{n-1}$
- A_i is $d_i \times d_{i+1}$
- Problem: How to parenthesize?

Example

- B is 3 × 100
- C is 100 × 5
- D is 5 × 5
- (B*C)*D takes 1500 + 75 = 1575 ops
 B*(C*D) takes 1500 + 2500 = 4000 ops

An Enumeration Approach

Matrix Chain-Product Alg.:

- Try all possible ways to parenthesize A=A₀*A₁*...*A_{n-1}
- Calculate number of ops for each one
- Pick the one that is best
- Running time:
 - The number of paranethesizations is equal to the number of binary trees with n nodes
 - This is exponential!
 - It is called the Catalan number, and it is almost 4ⁿ.
 - This is a terrible algorithm!

A Greedy Approach

 Idea #1: repeatedly select the product that uses (up) the most operations.

- Counter-example:
 - A is 10 × 5
 - B is 5 × 10
 - C is 10 × 5
 - D is 5 × 10
 - Greedy idea #1 gives (A*B)*(C*D), which takes 500+1000+500 = 2000 ops
 - A*((B*C)*D) takes 500+250+250 = 1000 ops

Another Greedy Approach

- Idea #2: repeatedly select the product that uses the fewest operations.
- Counter-example:
 - A is 101 × 11
 - B is 11 × 9
 - C is 9 × 100
 - D is 100 × 99
 - Greedy idea #2 gives A*((B*C)*D)), which takes 109989+9900+108900=228789 ops
 - (A*B)*(C*D) takes 9999+89991+89100=189090 ops

The greedy approach is not giving us the optimal value.

A "Recursive" Approach

Define subproblems:

- Find the best parenthesization of A_i*A_{i+1}*...*A_j.
- Let N_{i,j} denote the number of operations done by this subproblem.
- The optimal solution for the whole problem is N_{0,n-1}.

Subproblem optimality: The optimal solution can be defined in terms of optimal subproblems

- There has to be a final multiplication (root of the expression tree) for the optimal solution.
- Say, the final multiply is at index i: $(A_0^*...^*A_i)^*(A_{i+1}^*...^*A_{n-1})$.
- Then the optimal solution N_{0,n-1} is the sum of two optimal subproblems, N_{0,i} and N_{i+1,n-1} plus the time for the last multiply.

 If the global optimum did not have these optimal subproblems, we could define an even better "optimal" solution.

© 2015 Goodrich and Tamassia

Dynamic Programming

A Characterizing Equation

- The global optimal has to be defined in terms of optimal subproblems, depending on where the final multiply is at.
- Let us consider all possible places for that final multiply:
 - Recall that A_i is a $d_i \times d_{i+1}$ dimensional matrix.
 - So, a characterizing equation for N_{i,j} is the following:

 $N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$

Note that subproblems are not independent--the subproblems overlap.

A Dynamic Programming Algorithm

- Since subproblems overlap, we don't use recursion.
- Instead, we construct optimal subproblems "bottom-up."
- N_{i,i}'s are easy, so start with them
- Then do length 2,3,
 ... subproblems, and so on.
- The running time is O(n³)

Algorithm *matrixChain(S)*:

Input: sequence S of n matrices to be multipliedOutput: number of operations in an optimal paranethization of S

N...← *0*

for
$$\boldsymbol{b} \leftarrow 1$$
 to $\boldsymbol{n-1}$ do

for
$$i \leftarrow 0$$
 to n - b - 1 do

$$J \leftarrow \iota + b$$

$$N_{i,j} \leftarrow + \text{infinity}$$
for $k \leftarrow i$ to $j - l$ do

$$N_{i,j} \leftarrow \min\{N_{i,j}, N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1}\}$$

A Dynamic Programming Algorithm Visualization

0

n-1

N 0 1 2

answer

n-1

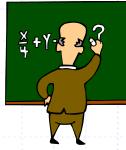
 $N_{i,j} = \min_{i \le k < j} \{ N_{i,k} + N_{k+1,j} + d_i d_{k+1} d_{j+1} \}$ The bottom-up construction fills in the N array by diagonals N_{i,i} gets values from pervious entries in i-th row and j-th column Filling in each entry in the N table takes O(n)time. Total run time: O(n³) Getting actual

parenthesization can be done by remembering "k" for each N entry

© 2015 Goodrich and Tamassia

Dynamic Programming

The General Dynamic Programming Technique



- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
 - Simple subproblems: the subproblems can be defined in terms of a few variables, such as j, k, l, m, and so on.
 - Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems
 - Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).