Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Dynamic Programming: Game Strategies

Football signed by President Gerald Ford when playing for University of Michigan. Public domain image.

Coins in a Line

- "Coins in a Line" is a game whose strategy is sometimes asked about during job interviews.
- In this game, an even number, n, of coins, of various denominations, are placed in a line.
- Two players, who we will call Alice and Bob, take turns removing one of the coins from either end of the remaining line of coins.
- The player who removes a set of coins with larger total value than the other player wins and gets to keep the money. The loser gets nothing.
- Alice's goal: get the most.

False Start 1: Greedy Method

* A natural greedy strategy is "always choose the largest-valued available coin."
- But this doesn't always work:
- [5, 10, 25, 10]: Alice chooses 10
- [5, 10, 25]: Bob chooses 25
- [5, 10]: Alice chooses 10
- [5]: Bob chooses 5
* Alice's total value: 20, Bob's total value: 30. (Bob wins, Alice loses)

False Start 2: Greedy Method

- Another greedy strategy is "choose odds or evens, whichever is better."
* Alice can always win with this strategy, but won't necessarily get the most money.
- Example: [1, 3, 6, 3, 1, 3]
- Alice's total value: \$9, Bob's total value: \$8.
- Alice wins \$9, but could have won $\$ 10$.
- How?

The General Dynamic Programming Technique

- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
- Simple subproblems: the subproblems can be defined in terms of a few variables, such as j, k, l, m , and so on.
- Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems
- Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).

Defining Simple Subproblems

- Since Alice and Bob can remove coins from either end of the line, an appropriate way to define subproblems is in terms of a range of indices for the coins, assuming they are initially numbered from 1 to n.
- Thus, let us define the following indexed parameter:

$$
M_{i, j}=\left\{\begin{array}{l}
\text { the maximum value of coins taken by Alice, for coins } \\
\text { numbered } i \text { to } j \text {, assuming Bob plays optimally. }
\end{array}\right.
$$

Therefore, the optimal value for Alice is determined by $M_{1, n}$.

Subproblem Optimality

- Let us assume that the values of the coins are stored in an array, V , so that coin 1 is of Value $\mathrm{V}[1]$, coin 2 is of Value V[2], and so on.
- Note that, given the line of coins from coin i to coin j, the choice for Alice at this point is either to take coin i or coin j and thereby gain a coin of value $\mathrm{V}[\mathrm{i}]$ or $\mathrm{V}[\mathrm{j}]$.
- Once that choice is made, play turns to Bob, who we are assuming is playing optimally.
- We should assume that Bob will make the choice among his possibilities that minimizes the total amount that Alice can get from the coins that remain.

Subproblem Overlap

- Alice should choose based on the following:
- If $j=i+1$, then she should pick the larger of $V[i]$ and $V[j]$, and the game is over.
- Otherwise, if Alice chooses coin i, then she gets a total value of

$$
\min \left\{M_{i+1, j-1}, M_{i+2, j}\right\}+V[i] .
$$

- Otherwise, if Alice chooses coin j, then she gets a total value of

$$
\min \left\{M_{i, j-2}, M_{i+1, j-1}\right\}+V[j] .
$$

- That is, we have initial conditions, for $\mathrm{i}=1,2, \ldots, \mathrm{n}-1$:

$$
M_{i, i+1}=\max \{V[i], V[i+1]\} .
$$

- And general equation:

$$
M_{i, j}=\max \left\{\min \left\{M_{i+1, j-1}, M_{i+2, j}\right\}+V[i], \min \left\{M_{i, j-2}, M_{i+1, j-1}\right\}+V[j]\right\} .
$$

Analysis of the Algorithm

- We can compute the $\mathbf{M}_{\mathrm{i}, \mathrm{j}}$ values, then, using memoization, by starting with the definitions for the above initial conditions and then computing all the $\mathbf{M}_{\mathrm{i}, \mathrm{j}}$'s where $\mathrm{j}-\mathrm{i}+1$ is 4 , then for all such values where $j-i+1$ is 6 , and so on.
- Since there are $\mathbf{O}(\mathbf{n})$ iterations in this algorithm and each iteration runs in $\mathbf{O}(\mathbf{n})$ time, the total time for this algorithm is $\mathbf{O}\left(\mathbf{n}^{2}\right)$.
- To recover the actual game strategy for Alice (and Bob), we simply need to note for each $\mathbf{M}_{\mathrm{i}, \mathrm{j}}$ whether Alice should choose coin i or coin j.

