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Recall the Map Operations 
q  get(k): if the map M has an entry with key k, 

return its associated value; else, return null  
q  put(k, v): insert entry (k, v) into the map M; 

if key k is not already in M, then return null; 
else, return old value associated with k 

q  remove(k): if the map M has an entry with 
key k, remove it from M and return its 
associated value; else, return null  

q  size(), isEmpty() 
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Intuitive Notion of a Map 
q  Intuitively, a map M supports the abstraction 

of using keys as indices with a syntax such as 
M[k].  

q  As a mental warm-up, consider a restricted 
setting in which a map with n items uses keys 
that are known to be integers in a range from 
0 to N − 1, for some N ≥ n. 
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More General Kinds of Keys 
q  But what should we do if our keys are not 

integers in the range from 0 to N – 1? 
n  Use a hash function to map general keys to 

corresponding indices in a table. 
n  For instance, the last four digits of a Social Security 

number. 
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Hash Functions and 
Hash Tables 
q  A hash function h maps keys of a given type to 

integers in a fixed interval [0, N - 1] 
q  Example: 

 h(x) = x mod N 
is a hash function for integer keys 

q  The integer h(x) is called the hash value of key x 

q  A hash table for a given key type consists of 
n  Hash function h 
n  Array (called table) of size N 

q  When implementing a map with a hash table, the goal 
is to store item (k, o) at index i = h(k) 
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Example 

q  We design a hash table for 
a map storing entries as 
(SSN, Name), where SSN 
(social security number) is a 
nine-digit positive integer 

q  Our hash table uses an 
array of size N = 10,000 and 
the hash function 
h(x) = last four digits of x 
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Hash Functions 

q  A hash function is 
usually specified as the 
composition of two 
functions: 
 Hash code: 
  h1: keys → integers 
 Compression function: 
  h2: integers → [0, N - 1] 

q  The hash code is 
applied first, and the 
compression function 
is applied next on the 
result, i.e.,  

 h(x) = h2(h1(x)) 
q  The goal of the hash 

function is to  
“disperse” the keys in 
an apparently random 
way 
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Hash Codes 
q  Memory address: 

n  We reinterpret the memory 
address of the key object as 
an integer. Good in general, 
except for numeric and string 
keys 

q  Integer cast: 
n  We reinterpret the bits of the 

key as an integer 
n  Suitable for keys of length 

less than or equal to the 
number of bits of the integer 
type (e.g., byte, short, int 
and float) 

q  Component sum: 
n  We partition the bits of 

the key into components 
of fixed length (e.g., 16 
or 32 bits) and we sum 
the components (ignoring 
overflows) 

n  Suitable for numeric keys 
of fixed length greater 
than or equal to the 
number of bits of the 
integer type. 
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Hash Codes (cont.) 
q  Polynomial accumulation: 

n  We partition the bits of the 
key into a sequence of 
components of fixed length 
(e.g., 8, 16 or 32 bits) 
   a0 a1 … an-1 

n  We evaluate the polynomial 
 p(z) = a0 + a1 z  + a2 z2 + …  

    … + an-1zn-1 

 at a fixed value z, ignoring 
overflows 

n  Especially suitable for strings 
(e.g., the choice z = 33 gives 
at most 6 collisions on a set of 
50,000 English words) 

q  Polynomial p(z) can be 
evaluated in O(n) time 
using Horner’s rule: 
n  The following 

polynomials are 
successively computed, 
each from the previous 
one in O(1) time 
  p0(z) = an-1 

  pi (z) = an-i-1 + zpi-1(z) 
  (i = 1, 2, …, n -1) 

q  We have p(z) = pn-1(z)  
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Tabulation-Based Hashing 
q  Suppose each key can be viewed as a tuple, k = (x1, x2, . . . , xd), for a 

fixed d, where each xi is in the range [0,M − 1]. 
q  There is a class of hash functions we can use, which involve simple 

table lookups, known as tabulation-based hashing. 
q  We can initialize d tables, T1, T2, . . . , Td, of size M each, so that each 

Ti[j] is a uniformly chosen independent random number in the range 
[0,N − 1].  

q  We then can compute the hash function, h(k), as 
  h(k) = T1[x1] ⊕ T2[x2] ⊕ . . . ⊕ Td[xd], 

     where “⊕” denotes the bitwise exclusive-or function. 
q  Because the values in the tables are themselves chosen at random, 

such a function is itself fairly random. For instance, it can be shown that 
such a function will cause two distinct keys to collide at the same hash 
value with probability 1/N, which is what we would get from a perfectly 
random function. 
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Compression Functions 

q  Division: 
n  h2 (y) = y mod N 
n  The size N of the 

hash table is usually 
chosen to be a prime  

n  The reason has to do 
with number theory 
and is beyond the 
scope of this course 

q  Random linear hash 
function: 
n  h2 (y) = (ay + b) mod N 
n  a and b are random 

nonnegative integers 
such that 
  a mod N ≠ 0 

n  Otherwise, every 
integer would map to 
the same value b  
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Collision Handling 

q  Collisions occur when 
different elements are 
mapped to the same 
cell 

q  Separate Chaining: let 
each cell in the table 
point to a linked list of 
entries that map there 

q  Separate chaining is 
simple, but requires 
additional memory 
outside the table 
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Map with Separate Chaining 
Delegate operations to a list-based map at each cell: 
 

Algorithm get(k):    
return A[h(k)].get(k)   
 
Algorithm put(k,v):    
t = A[h(k)].put(k,v)   
if t = null then   {k is a new key} 

 n = n + 1   
return t 
 
Algorithm remove(k):    
t = A[h(k)].remove(k) 
if t ≠ null then            {k was found} 

 n = n - 1   
return t 
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Performance of Separate 
Chaining 
q  Let us assume that our hash function, h, maps keys 

to independent uniform random values in the range 
[0,N−1]. 

q  Thus, if we let X be a random variable representing 
the number of items that map to a bucket, i, in the 
array A, then the expected value of X, E(X) = n/N, 
where n is the number of items in the map, since 
each of the N locations in A is equally likely for each 
item to be placed.  

q  This parameter, n/N, which is the ratio of the 
number of items in a hash table, n, and the capacity 
of the table, N, is called the load factor of the hash 
table.  

q  If it is O(1), then the above analysis says that the 
expected time for hash table operations is O(1) 
when collisions are handled with separate chaining. 
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Linear Probing 
q  Open addressing: the 

colliding item is placed in a 
different cell of the table 

q  Linear probing: handles 
collisions by placing the 
colliding item in the next 
(circularly) available table cell 

q  Each table cell inspected is 
referred to as a “probe” 

q  Colliding items lump together, 
causing future collisions to 
cause a longer sequence of 
probes 

q  Example: 
n  h(x) = x mod 13 
n  Insert keys 18, 41, 

22, 44, 59, 32, 31, 
73, in this order 

                           
0 1 2 3 4 5 6 7 8 9 10 11 12 

    41     18 44 59 32 22 31 73   
0 1 2 3 4 5 6 7 8 9 10 11 12 
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Search with Linear Probing 
q  Consider a hash table A 

that uses linear probing 
q  get(k) 

n  We start at cell h(k)  
n  We probe consecutive 

locations until one of the 
following occurs 
w  An item with key k is 

found, or 
w  An empty cell is found, 

or 
w  N cells have been 

unsuccessfully probed  

Algorithm get(k)   
 i ← h(k) 
 p ← 0 
 repeat 
  c ← A[i] 
  if c = ∅

return null 
   else if c.getKey () = k 
   return c.getValue() 
  else 
   i ← (i + 1) mod N 

  p ← p + 1 
until   p = N 
return null 
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Updates with Linear Probing 
q  To handle insertions and 

deletions, we introduce 
a special object, called 
DEFUNCT, which 
replaces deleted 
elements 

q  remove(k) 
n  We search for an entry 

with key k  

n  If such an entry, (k, v), is 
found, we move elements 
to fill the “hole” created 
by its removal. 

q  put(k, v) 
n  We throw an exception 

if the table is full 
n  We start at cell h(k)  
n  We probe consecutive 

cells until a A cell i is 
found that is empty.  

w  We store (k, v) in cell i 
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Pseudo-code for get and put 
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Pseudo-code for remove 
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Performance of Linear Probing 
q  In the worst case, searches, 

insertions and removals on a 
hash table take O(n) time 

q  The worst case occurs when 
all the keys inserted into the 
map collide 

q  The load factor α = n/N 
affects the performance of a 
hash table 

q  Assuming that the hash 
values are like random 
numbers, it can be shown 
that the expected number of 
probes for an insertion with 
open addressing is 

 1 / (1 - α) 

q  The expected running 
time of all the dictionary 
ADT operations in a 
hash table is O(1) with 
constant load < 1 

q  In practice, hashing is 
very fast provided the 
load factor is not close 
to 100% 

q  Applications of hash 
tables: 
n  small databases 
n  compilers 
n  browser caches 
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A More Careful Analysis of 
Linear Probing 
q  Recall that, in the linear-probing scheme for handling collisions, 

whenever an insertion at a cell i would cause a collision, then we 
instead insert the new item in the first cell of i+1, i+2, and so on, 
until we find an empty cell. 

q  For this analysis, let us assume that we are storing n items in a hash 
table of size N = 2n, that is, our hash table has a load factor of 1/2. 
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A More Careful Analysis of 
Linear Probing, 2 

q  Thus, if we can bound the expected value of the sum of Yi’s, then we 
can bound the expected time for a search or update operation in a 
linear-probing hashing scheme. 
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A More Careful Analysis of 
Linear Probing, 2 

q  Thus, if we can bound the expected value of the sum of Yi’s, then we 
can bound the expected time for a search or update operation in a 
linear-probing hashing scheme. 
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A More Careful Analysis of 
Linear Probing, 3 
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A More Careful Analysis of 
Linear Probing, 4 
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Double Hashing 
q  Double hashing uses a 

secondary hash function 
d(k) and handles collisions 
by placing an item in the 
first available cell of the 
series 

 (i + jd(k)) mod N 
 for j = 0,  1, … , N - 1 

q  The secondary hash 
function d(k) cannot have 
zero values 

q  The table size N must be a 
prime to allow probing of 
all the cells 

q  Common choice of 
compression function for 
the secondary hash 
function:   
d2(k) = q - k mod q 

  where 
n  q < N 
n  q is a prime 

q  The possible values for 
d2(k) are 

  1, 2, … , q 
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q  Consider a hash table 
storing integer keys 
that handles collision 
with double hashing 
n  N = 13  
n  h(k) = k mod 13  
n  d(k) = 7 - k mod 7  

q  Insert keys 18, 41, 
22, 44, 59, 32, 31, 
73, in this order 

Example of Double Hashing 

                           
0 1 2 3 4 5 6 7 8 9 10 11 12 

31   41     18 32 59 73 22 44   
0 1 2 3 4 5 6 7 8 9 10 11 12 

k h (k ) d (k ) Probes
18 5 3 5
41 2 1 2
22 9 6 9
44 5 5 5 10
59 7 4 7
32 6 3 6
31 5 4 5 9 0
73 8 4 8
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