
Heaps 1

Heaps

© 2015 Goodrich and Tamassia

Presentation for use with the textbook Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

xkcd. http://xkcd.com/835/. “Tree.” Used with permission under Creative Commons 2.5 License.

Heaps 2

Recall Priority Queue Operations

q  A priority queue stores a
collection of entries

q  Each entry is a pair
(key, value)

q  Main methods of the Priority
Queue ADT
n  insert(k, v)

inserts an entry with key k
and value v

n  removeMin()
removes and returns the
entry with smallest key

q  Additional methods
n  min()

returns, but does not
remove, an entry with
smallest key

n  size(), isEmpty()

q  Applications:
n  Standby flyers
n  Auctions
n  Stock market enigines

© 2015 Goodrich and Tamassia

Heaps 3

Recall PQ Sorting
q  We use a priority queue

n  Insert the elements with a series of insert operations
n  Remove the elements in sorted order with a series of removeMin

operations

q  The running time depends on the priority queue implementation:
n  Unsorted sequence gives selection-sort: O(n2) time
n  Sorted sequence gives insertion-sort: O(n2) time

q  Can we do better?

© 2015 Goodrich and Tamassia

Heaps 4

Heaps
q  A heap is a binary tree storing

keys at its nodes and satisfying
the following properties:

q  Heap-Order: for every internal
node v other than the root,
key(v) ≥ key(parent(v))

q  Complete Binary Tree: let h be
the height of the heap
n  for i = 0, … , h - 1, there are 2i

nodes of depth i
n  at depth h - 1, the internal nodes

are to the left of the external
nodes

2

6 5

7 9

q  The last node of a heap
is the rightmost node of
maximum depth

last node

© 2015 Goodrich and Tamassia

Heaps 5

Height of a Heap
q  Theorem: A heap storing n keys has height O(log n)

 Proof: (we apply the complete binary tree property)
n  Let h be the height of a heap storing n keys
n  Since there are 2i keys at depth i = 0, … , h - 1 and at least one key

at depth h, we have n ≥ 1 + 2 + 4 + … + 2h-1 + 1

n  Thus, n ≥ 2h , i.e., h ≤ log n

1

2

2h-1

1

keys
0

1

h-1

h

depth

© 2015 Goodrich and Tamassia

Heaps 6

Heaps and Priority Queues
q  We can use a heap to implement a priority queue
q  We store a (key, element) item at each internal node
q  We keep track of the position of the last node

(2, Sue)

(6, Mark) (5, Pat)

(9, Jeff) (7, Anna)

© 2015 Goodrich and Tamassia

Heaps 7

Array-based Heap Implementation
q  We can represent a heap with n

keys by means of an array of
length n

q  For the node at rank i
n  the left child is at rank 2i
n  the right child is at rank 2i + 1

q  Links between nodes are not
explicitly stored

q  Operation add corresponds to
inserting at rank n + 1

q  Operation remove_min
corresponds to removing at rank n

q  Yields in-place heap-sort

2

6 5

7 9

2 5 6 9 7
1 2 3 4 5

© 2015 Goodrich and Tamassia

Heaps 8

Insertion into a
Heap
q  Method insertItem of the

priority queue ADT
corresponds to the
insertion of a key k to
the heap

q  The insertion algorithm
consists of three steps
n  Find the insertion node z

(the new last node)
n  Store k at z
n  Restore the heap-order

property (discussed next)

2

6 5

7 9

insertion node

2

6 5

7 9 1

z

z

© 2015 Goodrich and Tamassia

Heaps 9

Upheap
q  After the insertion of a new key k, the heap-order property may be

violated
q  Algorithm upheap restores the heap-order property by swapping k

along an upward path from the insertion node
q  Upheap terminates when the key k reaches the root or a node

whose parent has a key smaller than or equal to k
q  Since a heap has height O(log n), upheap runs in O(log n) time

2

1 5

7 9 6 z

1

2 5

7 9 6 z

© 2015 Goodrich and Tamassia

Insertion Pseudo-Code
q  Assumes an array-based heap

implementation.

© 2015 Goodrich and Tamassia Heaps 10

Heaps 11

Removal from a Heap
q  Method removeMin of

the priority queue ADT
corresponds to the
removal of the root key
from the heap

q  The removal algorithm
consists of three steps
n  Replace the root key with

the key of the last node w
n  Remove w
n  Restore the heap-order

property (discussed next)

2

6 5

7 9

last node

w

7

6 5

9
w

new last node

© 2015 Goodrich and Tamassia

Heaps 12

Downheap
q  After replacing the root key with the key k of the last node, the

heap-order property may be violated
q  Algorithm downheap restores the heap-order property by

swapping key k along a downward path from the root
q  Upheap terminates when key k reaches a leaf or a node whose

children have keys greater than or equal to k
q  Since a heap has height O(log n), downheap runs in O(log n) time

7

6 5

9
w

5

6 7

9
w

© 2015 Goodrich and Tamassia

RemoveMin Pseudo-code
q  Assumes heap is implemented with an array.

© 2015 Goodrich and Tamassia Heaps 13

q  A heap has the following performance for the priority queue
operations.

q  The above analysis is based on the following facts:

n  The height of heap T is O(log n), since T is complete.
n  In the worst case, up-heap and down-heap bubbling take time proportional

to the height of T.
n  Finding the insertion position in the execution of insert and updating the

last node position in the execution of removeMin takes constant time.
n  The heap T has n internal nodes, each storing a reference to a key and a

reference to an element.

Performance of a Heap

© 2015 Goodrich and Tamassia Heaps 14

Heaps 15

Heap-Sort
q  Consider a priority

queue with n items
implemented by means
of a heap
n  the space used is O(n)
n  methods insert and

removeMin take O(log n)
time

n  methods size, isEmpty,
and min take time O(1)
time

q  Using a heap-based
priority queue, we can
sort a sequence of n
elements in O(n log n)
time

q  The resulting algorithm is
called heap-sort

q  Heap-sort is much faster
than quadratic sorting
algorithms, such as
insertion-sort and
selection-sort

© 2015 Goodrich and Tamassia

Heaps 16

Merging Two Heaps
q  We are given two two

heaps and a key k
q  We create a new heap

with the root node
storing k and with the
two heaps as subtrees

q  We perform downheap
to restore the heap-
order property

7

3

5 8

2

6 4

3

5 8

2

6 4

2

3

5 8

4

6 7

© 2015 Goodrich and Tamassia

Heaps 17

q  We can construct a heap
storing n given keys in
using a bottom-up
construction with log n
phases

q  In phase i, pairs of
heaps with 2i -1 keys are
merged into heaps with
2i+1-1 keys

Bottom-up Heap Construction

2i -1 2i -1

2i+1-1

© 2015 Goodrich and Tamassia

Heaps 18

Example

15 16 12 4 7 6 20 23

25

15 16

5

12 4

11

7 6

27

20 23

© 2015 Goodrich and Tamassia

Heaps 19

Example (contd.)

25

15 16

5

12 4

11

9 6

27

20 23

15

25 16

4

12 5

6

9 11

23

20 27

© 2015 Goodrich and Tamassia

Heaps 20

Example (contd.)

7

15

25 16

4

12 5

8

6

9 11

23

20 27

4

15

25 16

5

12 7

6

8

9 11

23

20 27

© 2015 Goodrich and Tamassia

Heaps 21

Example (end)

4

15

25 16

5

12 7

10

6

8

9 11

23

20 27

5

15

25 16

7

12 10

4

6

8

9 11

23

20 27

© 2015 Goodrich and Tamassia

Heaps 22

Analysis
q  We visualize the worst-case time of a downheap with a proxy path

that goes first right and then repeatedly goes left until the bottom
of the heap (this path may differ from the actual downheap path)

q  Since each node is traversed by at most two proxy paths, the total
number of nodes of the proxy paths is O(n)

q  Thus, bottom-up heap construction runs in O(n) time
q  Bottom-up heap construction is faster than n successive insertions

and speeds up the first phase of heap-sort, which takes O(n log n)
time in its second phase.

© 2015 Goodrich and Tamassia

