: Presentation for USe with the textbook Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

\'
N

Heaps

Vrzs vz, Q0
+*, -'_ PH4 rmi

p://xkcd.com, . .~ Used with permission under Creative Commons 2.5 License.

© 2015 Goodrich and Tamassiaf Heaps 1

Recall Priority Queue Operations

N

o A priority queue stores a o Additional methods
collection of entries = min()

a Each entry is a pair returns, but does not
(key, value) remove, an entry with

smallest key

m Size(), isEmpty()
o Applications:

o Main methods of the Priority
Queue ADT

= insert(k, v)

inserts an entry with key k = Standby flyers
and value v = Auctions
= removeMin() = Stock market enigines

removes and returns the
entry with smallest key

© 2015 Goodrich and Tamassia Heaps

Recall PQ Sorting

o We use a priority queue
B Insert the elements with a series of insert operations
B Remove the elements in sorted order with a series of removeMin
operations
o The running time depends on the priority queue implementation:
= Unsorted sequence gives selection-sort: O(n2) time
= Sorted sequence gives insertion-sort: O(n?) time

o Can we do better?

Algorithm PQ-Sort(C, P):
Input: An n-element array, C, index from 1 to n, and a priority queue P that
compares keys, which are elements of C', using a total order relation
Output: The array C sorted by the total order relation

N

for s +— 1 ton do

e < Ci
P.insert(e, e) // the key is the element itself
for i < 1 tondo
e < P.removeMin() // remove a smallest element from P
Cli] + e

© 2015 Goodrich and Tamassia Heaps 3

Heaps

a A heap is a binary tree storing a The last node of a heap
keys at its nodes and satisfying is the rightmost node of
the following properties: maximum depth

o Heap-Order: for every internal
node v other than the root,
key(v) = key(parent(v))

o Complete Binary Tree: let h be
the height of the heap
m fori=0,...,h—-1, there are 2!
nodes of depth i

= at depth 2 - 1, the internal nodes
are to the left of the external

nodes last node

© 2015 Goodrich and Tamassia Heaps 4

Height of a Heap

o Theorem: A heap storing n keys has height O(log n)

Proof: (we apply the complete binary tree property)

= Let &4 be the height of a heap storing n keys
= Since there are 2i keys at depth i =0, ..., 2 — 1 and at least one key
atdepth h, wehaven=1+2+4+ ... +21 +1

m Thus, n=2",i.e., h<logn

N

depth keys

© 2015 Goodrich and Tamassia Heaps

Heaps and Priority Queues

a We can use a heap to implement a priority queue
o We store a (key, element) item at each internal node
o We keep track of the position of the last node

N

{(Z,Sue)]

[(6, Mark) |

[(9, 3eff) |

© 2015 Goodrich and Tamassia Heaps 6

Array-based Heap Implementation

o We can represent a heap with n
keys by means of an array of
length n

o For the node at rank i

= the left child is at rank 2i
= the right child is at rank 2i + 1

o Links between nodes are not
explicitly stored

N

o Operation add corresponds to
inserting at rank n + 1 2151697
o Operation remove_min 1 2

corresponds to removing at rank »
o Yields in-place heap-sort

© 2015 Goodrich and Tamassia Heaps 7

Insertion Into a
Heap

o Method insertltem of the
priority queue ADT
corresponds to the
insertion of a key k to
the heap

a The insertion algorithm
consists of three steps

= Find the insertion node z
(the new last node)

m Store katz

= Restore the heap-order
property (discussed next)

N

© 2015 Goodrich and Tamassia Heaps 8

N

Upheap

Q

After the insertion of a new key k, the heap-order property may be
violated

Algorithm upheap restores the heap-order property by swapping &
along an upward path from the insertion node

Upheap terminates when the key & reaches the root or a node
whose parent has a key smaller than or equal to &

Since a heap has height O(log n), upheap runs in O(log n) time

© 2015 Goodrich and Tamassia Heaps 9

Insertion Pseudo-Code

N

a Assumes an array-based heap
implementation.

Algorithm Heaplnsert(k, ¢):

Input: A key-element pair
Output: An update of the array, A, of n elements, for a heap, to add (k, e)

n<n+1

An] < (k,e)

i <N

while : > 1 and A[|i/2]] > Ali] do
Swap A[|i/2]] and A[]
i+ [i/2]

© 2015 Goodrich and Tamassia Heaps

10

Removal from a Heap

a Method removeMin of
the priority queue ADT
corresponds to the
removal of the root key
from the heap

o The removal algorithm
consists of three steps

= Replace the root key with
the key of the last nhode w

= Remove w
= Restore the heap-order
property (discussed next) new last node

N

© 2015 Goodrich and Tamassia Heaps

11

Downheap

o After replacing the root key with the key k of the last node, the
heap-order property may be violated

o Algorithm downheap restores the heap-order property by
swapping key k along a downward path from the root

o Upheap terminates when key k reaches a leaf or a node whose
children have keys greater than or equal to &

o Since a heap has height O(log n), downheap runs in O(log n) time

N

© 2015 Goodrich and Tamassia Heaps 12

RemoveMin Pseudo-code

a Assumes heap is implemented with an array.

Algorithm HeapRemoveMin():
Input: None
Output: An update of the array, A, of n elements, for a heap, to remove and
return an item with smallest key
temp + A[l]
All] «+ Aln]
n<n-—1
141
while i < n do
if 22 + 1 < n then // this node has two internal children
if Afi] < A[2i] and A[i] < A[2i + 1] then
return temp /I we have restored the heap-order property
else
Let j be the index of the smaller of A[2:] and A[2i + 1]
Swap A[i] and A[j]
147
else // this node has zero or one internal child
if 2 < n then // this node has one internal child (the last node)
if A[i] > A[2i] then
Swap A[i] and A[2i]
return temp /I we have restored the heap-order property
return temp /I we reached the last node or an external node

N

© 2015 Goodrich and Tamassia Heaps 13

Performance of a Heap

o A heap has the following performance for the priority queue
operations.

N

Operation | Time
insert | O(logn)
removeMin | O(logn)

o The above analysis is based on the following facts:
= The height of heap T is O(log n), since T is complete.

= In the worst case, up-heap and down-heap bubbling take time proportional
to the height of T.

= Finding the insertion position in the execution of insert and updating the
last node position in the execution of removeMin takes constant time.

= The heap T has n internal nodes, each storing a reference to a key and a
reference to an element.

© 2015 Goodrich and Tamassia Heaps 14

Heap-Sort

N

a Consider a priority
queue with » items
implemented by means
of a heap

m the space used is O(n)

= methods insert and
removeMin take O(log n)
time

= methods size, isEmpty,
and min take time O(1)
time

© 2015 Goodrich and Tamassia

a Using a heap-based

Heaps

priority queue, we can
sort a sequence of n
elements in O(n log n)
time

The resulting algorithm is
called heap-sort

Heap-sort is much faster
than quadratic sorting
algorithms, such as
insertion-sort and
selection-sort

15

Merging Two Heaps

. O (2
o We are given two two
heaps and a key k& & © & O

a We create a new heap
with the root node
storing & and with the
two heaps as subtrees

a We perform downheap
to restore the heap-
order property

N

© 2015 Goodrich and Tamassia Heaps 16

Al

Bottom-up Heap Construction %,

N

o We can construct a heap
storing » given keys in
using a bottom-up
construction with log n
phases

a In phase i, pairs of ﬂ
heaps with 2-1 keys are
merged into heaps with
2i+1-1 keys

2i-1 2i-1

© 2015 Goodrich and Tamassia Heaps 17

A
N

. —_—— _——
_— T — —
— —_—
S —_—
—_— — m—
—_— —_—

~
~
-~ -\ ("Y \7"\
())))
PN /\ “\ /\ “\ /\ “\\

@ ® @ ®» @ » @

© 2015 Goodrich and Tamassia Heaps 18

Example (contd.)

(Y

N

. —— i —
_— T m——
—_— —_—
S —_—
—_— — m——
— —_—

. —— _——
_— ——
— —
— — —_—
—_—— o —

© 2015 Goodrich and Tamassia Heaps 19

Example (contd.)

(N

N

© 2015 Goodrich and Tamassia Heaps 20

) Example (end)

© 2015 Goodrich and Tamassia Heaps 21

Analysis

o We visualize the worst-case time of a downheap with a proxy path
that goes first right and then repeatedly goes left until the bottom
of the heap (this path may differ from the actual downheap path)

o Since each node is traversed by at most two proxy paths, the total
number of nodes of the proxy paths is O(n)

o Thus, bottom-up heap construction runs in O(n) time

o Bottom-up heap construction is faster than n successive insertions
and speeds up the first phase of heap-sort, which takes O(n log n)

N
\J

time in its second phase. C)
() Lo
~— //// \\\\
\\\ v -~
@ > (O >
- -~
\\\ // \\\ // \\\ 7 \\\
. p / ‘ > . / ‘ J . / ‘ / .

N

© 2015 Goodrich and Tamassia Heaps

