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Recall Priority Queue Operations 

q  A priority queue stores a 
collection of entries 

q  Each entry is a pair 
(key, value) 

q  Main methods of the Priority 
Queue ADT 
n  insert(k, v) 

inserts an entry with key k 
and value v 

n  removeMin() 
removes and returns the 
entry with smallest key 

q  Additional methods 
n  min() 

returns, but does not 
remove, an entry with 
smallest key 

n  size(), isEmpty() 

q  Applications: 
n  Standby flyers 
n  Auctions 
n  Stock market enigines 
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Recall PQ Sorting 
q  We use a priority queue 

n  Insert the elements with a series of insert operations 
n  Remove the elements in sorted order with a series of removeMin 

operations 

q  The running time depends on the priority queue implementation: 
n  Unsorted sequence gives selection-sort: O(n2) time 
n  Sorted sequence gives insertion-sort: O(n2) time 

q  Can we do better? 
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Heaps 
q  A heap is a binary tree storing 

keys at its nodes and satisfying 
the following properties: 

q  Heap-Order: for every internal 
node v other than the root, 
key(v) ≥ key(parent(v)) 

q  Complete Binary Tree: let h be 
the height of the heap 
n  for i = 0, … , h - 1, there are 2i 

nodes of depth i 
n  at depth h - 1, the internal nodes 

are to the left of the external 
nodes 
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q  The last node of a heap 
is the rightmost node of 
maximum depth 

last node 
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Height of a Heap 
q  Theorem: A heap storing n keys has height O(log n) 

 Proof: (we apply the complete binary tree property) 
n  Let h be the height of a heap storing n keys 
n  Since there are 2i keys at depth i = 0, … , h - 1 and at least one key 

at depth h, we have n ≥ 1 + 2 + 4 + … + 2h-1  + 1  

n  Thus, n ≥ 2h , i.e., h ≤ log n 
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Heaps and Priority Queues 
q  We can use a heap to implement a priority queue 
q  We store a (key, element) item at each internal node 
q  We keep track of the position of the last node 

(2, Sue) 

(6, Mark) (5, Pat) 

(9, Jeff) (7, Anna) 
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Array-based Heap Implementation 
q  We can represent a heap with n 

keys by means of an array of 
length n  

q  For the node at rank i 
n  the left child is at rank 2i  
n  the right child is at rank 2i + 1 

q  Links between nodes are not 
explicitly stored 

q  Operation add corresponds to 
inserting at rank n + 1 

q  Operation remove_min 
corresponds to removing at rank n 

q  Yields in-place heap-sort 
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Insertion into a 
Heap 
q  Method insertItem of the 

priority queue ADT 
corresponds to the 
insertion of a key k to 
the heap 

q  The insertion algorithm 
consists of three steps 
n  Find the insertion node z 

(the new last node) 
n  Store k at z 
n  Restore the heap-order 

property (discussed next) 
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Upheap 
q  After the insertion of a new key k, the heap-order property may be 

violated 
q  Algorithm upheap restores the heap-order property by swapping k 

along an upward path from the insertion node 
q  Upheap terminates when the key k reaches the root or a node 

whose parent has a key smaller than or equal to k  
q  Since a heap has height O(log n), upheap runs in O(log n) time 
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Insertion Pseudo-Code 
q  Assumes an array-based heap 

implementation. 
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Removal from a Heap 
q  Method removeMin of 

the priority queue ADT 
corresponds to the 
removal of the root key 
from the heap 

q  The removal algorithm 
consists of three steps 
n  Replace the root key with 

the key of the last node w 
n  Remove w  
n  Restore the heap-order 

property (discussed next) 
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last node 
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new last node 
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Downheap 
q  After replacing the root key with the key k of the last node, the 

heap-order property may be violated 
q  Algorithm downheap restores the heap-order property by 

swapping key k along a downward path from the root 
q  Upheap terminates when key k reaches a leaf or a node whose 

children have keys greater than or equal to k  
q  Since a heap has height O(log n), downheap runs in O(log n) time 
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RemoveMin Pseudo-code 
q  Assumes heap is implemented with an array. 
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q  A heap has the following performance for the priority queue 
operations. 

 
 
q  The above analysis is based on the following facts: 

n  The height of heap T is O(log n), since T is complete. 
n  In the worst case, up-heap and down-heap bubbling take time proportional 

to the height of T. 
n  Finding the insertion position in the execution of insert and updating the 

last node position in the execution of removeMin takes constant time. 
n  The heap T has n internal nodes, each storing a reference to a key and a 

reference to an element. 

Performance of a Heap 
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Heap-Sort 
q  Consider a priority 

queue with n items 
implemented by means 
of a heap 
n  the space used is O(n) 
n  methods insert and 

removeMin take O(log n) 
time 

n  methods size, isEmpty, 
and min take time O(1) 
time 

q  Using a heap-based 
priority queue, we can 
sort a sequence of n 
elements in O(n log n) 
time 

q  The resulting algorithm is 
called heap-sort 

q  Heap-sort is much faster 
than quadratic sorting 
algorithms, such as 
insertion-sort and 
selection-sort 
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Merging Two Heaps 
q  We are given two two 

heaps and a key k 
q  We create a new heap 

with the root node 
storing k and with the 
two heaps as subtrees 

q  We perform downheap 
to restore the heap-
order property  
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q  We can construct a heap 
storing n given keys in 
using a bottom-up 
construction with log n 
phases 

q  In phase i, pairs of 
heaps with 2i -1 keys are 
merged into heaps with 
2i+1-1 keys 

Bottom-up Heap Construction 

2i -1 2i -1 

2i+1-1 
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Example 

15 16 12 4 7 6 20 23 

25 

15 16 
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11 

7 6 

27 

20 23 
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Example (contd.) 

25 

15 16 

5 

12 4 

11 

9 6 

27 

20 23 

15 

25 16 

4 

12 5 

6 

9 11 

23 

20 27 

© 2015 Goodrich and Tamassia 



Heaps 20 

Example (contd.) 
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Example (end) 
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Analysis 
q  We visualize the worst-case time of a downheap with a proxy path 

that goes first right and then repeatedly goes left until the bottom 
of the heap (this path may differ from the actual downheap path) 

q  Since each node is traversed by at most two proxy paths, the total 
number of nodes of the proxy paths is O(n)  

q  Thus, bottom-up heap construction runs in O(n) time  
q  Bottom-up heap construction is faster than n successive insertions 

and speeds up the first phase of heap-sort, which takes O(n log n) 
time in its second phase. 
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