
© 2015 Goodrich and Tamassia 0/1 Knapsack 1

Dynamic Programming:
0/1 Knapsack

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

© 2015 Goodrich and Tamassia Dynamic Programming 2

The 0/1 Knapsack Problem
Given: A set S of n items, with each item i having
n  wi - a positive weight
n  bi - a positive benefit

Goal: Choose items with maximum total benefit but with
weight at most W.
If we are not allowed to take fractional amounts, then
this is the 0/1 knapsack problem.
n  In this case, we let T denote the set of items we take

n  Objective: maximize

n  Constraint:

∑
∈Ti

ib

∑
∈

≤
Ti

i Ww

© 2015 Goodrich and Tamassia 0/1 Knapsack 3

Given: A set S of n items, with each item i having
n  bi - a positive “benefit”
n  wi - a positive “weight”

Goal: Choose items with maximum total benefit but with
weight at most W.

Example

Weight:
Benefit:

1 2 3 4 5

4 in 2 in 2 in 6 in 2 in

$20 $3 $6 $25 $80

Items:
box of width 9 in

Solution:
•  item 5 ($80, 2 in)
•  item 3 ($6, 2in)
•  item 1 ($20, 4in)

“knapsack”

© 2015 Goodrich and Tamassia 0/1 Knapsack 4

The General Dynamic
Programming Technique

Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:
n  Simple subproblems: the subproblems can be

defined in terms of a few variables, such as j, k, l,
m, and so on.

n  Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems

n  Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

© 2015 Goodrich and Tamassia 0/1 Knapsack 5

A 0/1 Knapsack Algorithm,
First Attempt

Sk: Set of items numbered 1 to k.
Define B[k] = best selection from Sk.
Problem: does not have subproblem optimality:
n  Consider set S={(3,2),(5,4),(8,5),(4,3),(10,9)} of

(benefit, weight) pairs and total weight W = 20

Best for S4:

Best for S5:

© 2015 Goodrich and Tamassia 0/1 Knapsack 6

A 0/1 Knapsack Algorithm,
Second (Better) Attempt

Sk: Set of items numbered 1 to k.
Define B[k,w] to be the best selection from Sk with
weight at most w
Good news: this does have subproblem optimality.

I.e., the best subset of Sk with weight at most w is
either
n  the best subset of Sk-1 with weight at most w or
n  the best subset of Sk-1 with weight at most w-wk plus item k

⎩
⎨
⎧

+−−−

>−
=

else}],1[],,1[max{
 if],1[

],[
kk

k

bwwkBwkB
wwwkB

wkB

© 2015 Goodrich and Tamassia 0/1 Knapsack 7

0/1 Knapsack Algorithm

Recall the definition of
B[k,w]
Since B[k,w] is defined in
terms of B[k-1,*], we can
use two arrays of instead of
a matrix
Running time: O(nW).
Not a polynomial-time
algorithm since W may be
large
This is a pseudo-polynomial
time algorithm

Algorithm 01Knapsack(S, W):
 Input: set S of n items with benefit bi
 and weight wi; maximum weight W
 Output: benefit of best subset of S with
 weight at most W
 let A and B be arrays of length W + 1
 for w ← 0 to W do

 B[w] ← 0
for k ← 1 to n do

 copy array B into array A
 for w ← wk to W do
 if A[w-wk] + bk > A[w] then
 B[w] ← A[w-wk] + bk

return B[W]

⎩
⎨
⎧

+−−−

>−
=

else}],1[],,1[max{
 if],1[

],[
kk

k

bwwkBwkB
wwwkB

wkB

