Dynamic Programming: 0/1 Knapsack
The 0/1 Knapsack Problem

- Given: A set S of n items, with each item i having
 - w_i - a positive weight
 - b_i - a positive benefit

- Goal: Choose items with maximum total benefit but with weight at most W.

- If we are not allowed to take fractional amounts, then this is the 0/1 knapsack problem.
 - In this case, we let T denote the set of items we take

 - Objective: maximize $\sum_{i \in T} b_i$
 - Constraint: $\sum_{i \in T} w_i \leq W$
Example

- Given: A set S of n items, with each item i having
 - b_i - a positive "benefit"
 - w_i - a positive "weight"
- Goal: Choose items with maximum total benefit but with weight at most W.

<table>
<thead>
<tr>
<th>Items</th>
<th>Weight</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4 in</td>
<td>$20</td>
</tr>
<tr>
<td>2</td>
<td>2 in</td>
<td>$3</td>
</tr>
<tr>
<td>3</td>
<td>2 in</td>
<td>$6</td>
</tr>
<tr>
<td>4</td>
<td>6 in</td>
<td>$25</td>
</tr>
<tr>
<td>5</td>
<td>2 in</td>
<td>$80</td>
</tr>
</tbody>
</table>

Solution:
- item 5 ($80, 2 in)
- item 3 ($6, 2 in)
- item 1 ($20, 4 in)

"knapsack"
box of width 9 in
The General Dynamic Programming Technique

 Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:

- **Simple subproblems:** the subproblems can be defined in terms of a few variables, such as j, k, l, m, and so on.

- **Subproblem optimality:** the global optimum value can be defined in terms of optimal subproblems

- **Subproblem overlap:** the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).
A 0/1 Knapsack Algorithm, First Attempt

- S_k: Set of items numbered 1 to k.
- Define $B[k] = \text{best selection from } S_k$.
- Problem: does not have subproblem optimality:
 - Consider set $S=\{(3,2),(5,4),(8,5),(4,3),(10,9)\}$ of (benefit, weight) pairs and total weight $W = 20$

Best for S_4:

```
(3,2) (5,4) (8,5) (4,3)
```

Best for S_5:

```
(3,2) (5,4) (8,5) (10,9)
```

© 2015 Goodrich and Tamassia 0/1 Knapsack
A 0/1 Knapsack Algorithm, Second (Better) Attempt

- S_k: Set of items numbered 1 to k.
- Define $B[k, w]$ to be the best selection from S_k with weight at most w
- Good news: this does have subproblem optimality.

$$B[k, w] = \begin{cases}
 B[k - 1, w] & \text{if } w_k > w \\
 \max\{B[k - 1, w], B[k - 1, w - w_k] + b_k\} & \text{else}
\end{cases}$$

- I.e., the best subset of S_k with weight at most w is either
 - the best subset of S_{k-1} with weight at most w or
 - the best subset of S_{k-1} with weight at most $w - w_k$ plus item k
0/1 Knapsack Algorithm

\[B[k, w] = \begin{cases}
B[k - 1, w] & \text{if } w_k > w \\
\max \{B[k - 1, w], B[k - 1, w - w_k] + b_k\} & \text{else}
\end{cases} \]

- Recall the definition of \(B[k, w] \)
- Since \(B[k, w] \) is defined in terms of \(B[k-1, \ast] \), we can use two arrays of instead of a matrix
- Running time: \(O(nW) \)
- Not a polynomial-time algorithm since \(W \) may be large
- This is a pseudo-polynomial time algorithm

Algorithm 01Knapsack(S, W):

Input: set \(S \) of \(n \) items with benefit \(b_i \) and weight \(w_i \); maximum weight \(W \)

Output: benefit of best subset of \(S \) with weight at most \(W \)

let \(A \) and \(B \) be arrays of length \(W + 1 \)

for \(w \leftarrow 0 \) to \(W \) do

\[B[w] \leftarrow 0 \]

for \(k \leftarrow 1 \) to \(n \) do

copy array \(B \) into array \(A \)

for \(w \leftarrow w_k \) to \(W \) do

if \(A[w - w_k] + b_k > A[w] \) then

\[B[w] \leftarrow A[w - w_k] + b_k \]

return \(B[W] \)