Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Dynamic Programming: Longest Common Subsequences

Effects of radiation on DNA's double helix, 2003. U.S. government image. NASA-MSFC.

Application: DNA Sequence Alignment

- DNA sequences can be viewed as strings of A, C, G, and T characters, which represent nucleotides.
- Finding the similarities between two DNA sequences is an important computation performed in bioinformatics.
- For instance, when comparing the DNA of different organisms, such alignments can highlight the locations where those organisms have identical DNA patterns.

Application: DNA Sequence Alignment

- Finding the best alignment between two DNA strings involves minimizing the number of changes to convert one string to the other.

```
X: ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
    | || || || | ||||||||||||
    G TC GT CG G AAGCCGGCCGAA
    GTCGT CGGAA GCCG GC C G AA
    ||||| ||||| |||| || | | ||
Y: GTCGTTCGGAATGCCGTTGCTCTGTAA
```

Figure 12.1: Two DNA sequences, X and Y, and their alignment in terms of a longest subsequence, GTCGTCGGAAGCCGGCCGAA, that is common to these two strings.

- A brute-force search would take exponential time, but we can do much better using dynamic programming.

The General Dynamic Programming Technique

- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
- Simple subproblems: the subproblems can be defined in terms of a few variables, such as j, k, l, m , and so on.
- Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems
- Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).

Subsequences

- A subsequence of a character string $x_{0} x_{1} x_{2} \ldots x_{n-1}$ is a string of the form $x_{i 1} x_{i} \ldots$ x_{ik} where $\mathrm{i}_{\mathrm{j}}<\mathrm{i}_{\mathrm{j}+1}$.
- Not the same as substring!
- Example String: ABCDEFGHIJK
- Subsequence: ACEGJIK
- Subsequence: DFGHK
- Not subsequence: DAGH

The Longest Common Subsequence (LCS) Problem

Given two strings X and Y, the longest common subsequence (LCS) problem is to find a longest subsequence common to both X and Y

- Has applications to DNA similarity testing (alphabet is $\{\mathrm{A}, \mathrm{C}, \mathrm{G}, \mathrm{T}\}$)
- Example: ABCDEFG and XZACKDFWGH have ACDFG as a longest common subsequence

A Poor Approach to the LCS Problem

- A Brute-force solution:
- Enumerate all subsequences of X
- Test which ones are also subsequences of Y
- Pick the longest one.
-Analysis:
- If X is of length n, then it has 2^{n} subsequences
- This is an exponential-time algorithm!

A Dynamic-Programming Approach to the LCS Problem

- Define $L[i, j]$ to be the length of the longest common subsequence of $X[0 . . i]$ and $Y[0 . . j]$.
- Allow for -1 as an index, so $L[-1, k]=0$ and $L[k,-1]=0$, to indicate that the null part of X or Y has no match with the other.
- Then we can define $L[i, j]$ in the general case as follows:

1. If $x i=y j$, then $L[i, j]=L[i-1, j-1]+1$ (we can add this match)
2. If $x i \neq y j$, then $L[i, j]=\max \{L[i-1, j], L[i, j-1]\}$ (we have no match here)

Case 1:
01234567891011

X=GTTCCTAATA
0123456789

Case 2:

An LCS Algorithm

Algorithm LCS(X,Y):

Input: Strings X and Y with n and m elements, respectively
Output: For $\mathrm{i}=0, \ldots, \mathrm{n}-1, \mathrm{j}=0, \ldots, \mathrm{~m}-1$, the length $\mathrm{L}[\mathrm{i}, \mathrm{j}]$ of a longest string that is a subsequence of both the string $X[0 . . i]=x_{0} x_{1} x_{2} \ldots x_{i}$ and the string $Y[0 . . j]=y_{0} y_{1} y_{2} \ldots y_{j}$

$$
\text { for } \mathrm{i}=1 \text { to } \mathrm{n}-1 \text { do }
$$

$L[i,-1]=0$
for $\mathrm{j}=0$ to $\mathrm{m}-1$ do
$\mathrm{L}[-1, \mathrm{j}]=0$
for $\mathrm{i}=0$ to $\mathrm{n}-1$ do
for $\mathrm{j}=0$ to $\mathrm{m}-1$ do
if $x_{i}=y_{j}$ then
$L[i, j]=L[i-1, j-1]+1$
else

$$
L[i, j]=\max \{L[i-1, j], L[i, j-1]\}
$$

return array L

Visualizing the LCS Algorithm

\boldsymbol{L}	-1	0	1	2	3	4	5	6	7	8	9	10	11
-1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1	1	1	1	1	1	1
1	0	0	1	1	2	2	2	2	2	2	2	2	2
2	0	0	1	1	2	2	2	3	3	3	3	3	3
3	0	1	1	1	2	2	2	3	3	3	3	3	3
4	0	$\mathbf{1}$	1	1	2	2	2	3	3	3	3	3	3
5	0	1	1	1	$\mathbf{2}$	2	2	3	4	4	4	4	4
6	0	1	1	2	2	$\mathbf{3}$	3	3	4	4	5	5	5
7	0	1	1	2	2	3	$\mathbf{4}$	4	4	4	5	5	6
8	0	1	1	2	3	3	4	5	$\mathbf{5}$	5	5	5	6
9	0	1	1	2	3	4	4	5	5	5	6	6	$\mathbf{6}$

01234567891011
$Y=C G A T A A T T G A G A$
$X=G T T C C T A A T A$

0123456789

Analysis of LCS Algorithm

- We have two nested loops
- The outer one iterates n times
- The inner one iterates m times
- A constant amount of work is done inside each iteration of the inner loop
- Thus, the total running time is $\mathrm{O}(\mathrm{nm})$
- Answer is contained in L[n,m] (and the subsequence can be recovered from the L table).

