Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Dynamic Programming:
Longest Common Subsequences

Effects of radiation on DNA’s double helix, 2003. U.S. government
image. NASA-MSFC.

© 2015 Goodrich and Tamassia LCS 1

Application: DNA Sequence

Alignment

@ DNA sequences can be viewed as strings of
A, C, G, and T characters, which represent
nucleotides.

Finding the similarities between two DNA
sequences is an important computation
performed in bioinformatics.

= For instance, when comparing the DNA of
different organisms, such alignments can highlight
the locations where those organisms have
identical DNA patterns.

N

© 2015 Goodrich and Tamassia LCS 2

Application: DNA Sequence

Alignment

@ Finding the best alignment between two DNA strings
involves minimizing the number of changes to

convert one string to the other.

X: ACCGGTCGAGTGCGCGGAAGCCGGCCGAA
Lrr e e

G TC GT CG G AAGCCGGCCGAA

GTCGT CGGAA GCCG GC C G AA

L Y O O O
Y: GTCGTTCGGAATGCCGTTGCTCTGTAA

N

Figure 12.1: Two DNA sequences, X and Y, and their alignment in terms of a longest
subsequence, GTCGTCGGAAGCCGGCCGAA, that is common to these two strings.

A brute-force search would take exponential time,
but we can do much better using dynamic
programming.

© 2015 Goodrich and Tamassia LCS

The General Dynamic
Programming Technique

N

@ Applies to a problem that at first seems to
require a lot of time (possibly exponential),
provided we have:

= Simple subproblems: the subproblems can be
defined in terms of a few variables, such as j, k, |,
m, and so on.

= Subproblem optimality: the global optimum value
can be defined in terms of optimal subproblems

= Subproblem overlap: the subproblems are not
independent, but instead they overlap (hence,
should be constructed bottom-up).

© 2015 Goodrich and Tamassia LCS 4

Subseqguences

N

® A subsequence of a character string
XoX1X5... X1 IS @ string of the form X x.,...
X., where ij < ij+1.

Not the same as substring!

@ Example String: ABCDEFGHIJK
= Subsequence: ACEGIIK
= Subsequence: DFGHK
= Not subsequence: DAGH

© 2015 Goodrich and Tamassia LCS 5

The Longest Common
Subsequence (LCS) Problem

N

Given two strings X and Y, the longest
common subsequence (LCS) problem is
to find a longest subsequence common
to both X and Y

Has applications to DNA similarity
testing (alphabet is {A,C,G,T})

@ Example: ABCDEFG and XZACKDFWGH
have ACDFG as a longest common
subsequence

© 2015 Goodrich and Tamassia LCS 6

A Poor Approach to the
LCS Problem

N

A Brute-force solution:
= Enumerate all subsequences of X
= Test which ones are also subsequences of Y
= Pick the longest one.

@ Analysis:

s If X is of length n, then it has 2"
subsequences

= This is an exponential-time algorithm!

© 2015 Goodrich and Tamassia LCS 7

A Dynamic-Programming
Approach to the LCS Problem

p
T @ Define L[i,j] to be the length of the longest common
subsequence of X[O0..i] and Y[O0..j].

Allow for -1 as an index, so L[-1,k] = 0 and L[k,-1]=0, to
indicate that the null part of X or Y has no match with the
other.

#® Then we can define L[i,j] in the general case as follows:
1. If xi=yj, then L[i,j] = L[i-1,j-1] + 1 (we can add this match)
2. If xi#yj, then L[i,j] = max{L[i-1,j], L[i,j-1]} (we have no
match here)

Case 1: Case 2:
0123456789 1011 012345678910
Y=CGATAATTGAGA Y=CGATAATTGAG L[9.9]=6
L0 NN\ / NN
X=GTTCCTAATA X=GTTCCTAATA
0123456789 0123456789

© 2015 Goodrich and Tamassia LCS 8

An LCS Algorithm

N

Algorithm LCS(X,Y):

Input: Strings X and Y with n and m elements, respectively

Output: Fori =0,...,n-1,j =0,...,m-1, the length L[i, j] of a longest string
that is a subsequence of both the string X[0..i] = XyX;X5...X; and the
string Y [0.. j] = YoY1Y2--Y;

fori =1ton-1do

L[i,-1]=0
for j =0 to m-1 do
L[']-/J] =0

fori =0 ton-1do
forj =0 to m-1 do
if x, =y, then
L[i, j] = L[i-1,j-1] + 1
else
L[i, j] = max{L[i-1, jI, L[i, j-11}
return array L

© 2015 Goodrich and Tamassia LCS 9

Visualizing the LCS Algorithm

—
=3
=G

g5

mm\r,m

3T“wﬂ

N < AN o

—Q N —

A Qo

=~ =

— 1o AN |enfen|en (<t |wn [|0 |\e
S o NN || |wv|ln|n o
o |o NN |nfen |t |nvn|n|n (O
o |o N[N n || (||
(o K AN|n|nfon ||| |\ |n
o |o AN [n|enfen|en|on <t v |n
n o NN N [N |en [|
< | o AN | NN [N |0 |on | <
ol K= NN NN NN |n|on
e\ () — == | AN AN AN
— (a») — — — —_— — — — — —
o |o S|l | | [= === |~
- |o o |lo|c|lo|lo|lo|o|oc|o
~N — NN [< |V |O |~ [0]

10

LCS

© 2015 Goodrich and Tamassia

Analysis of LCS Algorithm

N

#\We have two nested loops
» | he outer one iterates n times
s [he inner one iterates m times

a A constant amount of work is done inside
each iteration of the inner loop

= Thus, the total running time is O(nm)
#® Answer is contained in L[n,m] (and the

subsequence can be recovered from the
L table).

© 2015 Goodrich and Tamassia LCS 11

