Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Dynamic Programming: Longest Common Subsequences

Effects of radiation on DNA's double helix, 2003. U.S. government image. NASA-MSFC.

LCS

Application: DNA Sequence Alignment

- DNA sequences can be viewed as strings of A, C, G, and T characters, which represent nucleotides.
- Finding the similarities between two DNA sequences is an important computation performed in bioinformatics.
 - For instance, when comparing the DNA of different organisms, such alignments can highlight the locations where those organisms have identical DNA patterns.

Application: DNA Sequence Alignment

Finding the best alignment between two DNA strings involves minimizing the number of changes to convert one string to the other.

Figure 12.1: Two DNA sequences, X and Y, and their alignment in terms of a longest subsequence, GTCGTCGGAAGCCGGCCGAA, that is common to these two strings.

 A brute-force search would take exponential time, but we can do much better using dynamic programming.

The General Dynamic Programming Technique

- Applies to a problem that at first seems to require a lot of time (possibly exponential), provided we have:
 - Simple subproblems: the subproblems can be defined in terms of a few variables, such as j, k, l, m, and so on.
 - Subproblem optimality: the global optimum value can be defined in terms of optimal subproblems
 - Subproblem overlap: the subproblems are not independent, but instead they overlap (hence, should be constructed bottom-up).

Subsequences

A subsequence of a character string $x_0x_1x_2...x_{n-1}$ is a string of the form $x_{i_1}x_{i_2}...$ \mathbf{x}_{ik} , where $\mathbf{i}_j < \mathbf{i}_{j+1}$. Not the same as substring! Example String: ABCDEFGHIJK Subsequence: ACEGJIK Subsequence: DFGHK Not subsequence: DAGH

The Longest Common Subsequence (LCS) Problem

- Given two strings X and Y, the longest common subsequence (LCS) problem is to find a longest subsequence common to both X and Y
- Has applications to DNA similarity testing (alphabet is {A,C,G,T})
- Example: ABCDEFG and XZACKDFWGH have ACDFG as a longest common subsequence

A Poor Approach to the LCS Problem

A Brute-force solution:

- Enumerate all subsequences of X
- Test which ones are also subsequences of Y
- Pick the longest one.
- Analysis:
 - If X is of length n, then it has 2ⁿ subsequences
 - This is an exponential-time algorithm!

A Dynamic-Programming Approach to the LCS Problem

- Define L[i,j] to be the length of the longest common subsequence of X[0..i] and Y[0..j].
- Allow for -1 as an index, so L[-1,k] = 0 and L[k,-1]=0, to indicate that the null part of X or Y has no match with the other.

Then we can define L[i,j] in the general case as follows:

- 1. If xi=yj, then L[i,j] = L[i-1,j-1] + 1 (we can add this match)
- If xi≠yj, then L[i,j] = max{L[i-1,j], L[i,j-1]} (we have no match here)

0 1 2 3 4 5 6 7 8 9 10 11 Y=CGATAATTGAGA L[8,10]=5

X=GTTCCTAA

23456789

Case 1:

0 1 2 3 4 5 6 7 8 9 10 Y=CGATAATTGAG

Case 2:

L[9,9]=6 L[8,10]=5

An LCS Algorithm

Algorithm LCS(X,Y): **Input:** Strings X and Y with n and m elements, respectively **Output:** For i = 0, ..., n-1, j = 0, ..., m-1, the length L[i, j] of a longest string that is a subsequence of both the string $X[0..i] = x_0 x_1 x_2 ... x_i$ and the string Y [0.. j] = $y_0 y_1 y_2 ... y_i$ for i =1 to n-1 do L[i,-1] = 0**for** j =0 to m-1 **do** L[-1,j] = 0**for** i =0 to n-1 **do for** j =0 to m-1 **do** if $x_i = y_i$ then L[i, j] = L[i-1, j-1] + 1else $L[i, j] = max\{L[i-1, j], L[i, j-1]\}$ return array L

Visualizing the LCS Algorithm

L	-1	0	1	2	3	4	5	6	7	8	9	10	11
-1	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1	1	1	1	1	1	1
1	0	0	1	1	2	2	2	2	2	2	2	2	2
2	0	0	1	1	2	2	2	3	3	3	3	3	3
3	0	1	1	1	2	2	2	3	3	3	3	3	3
4	0	1	1	1	2	2	2	3	3	3	3	3	3
5	0	1	1	1	2	2	2	3	4	4	4	4	4
6	0	1	1	2	2	3	3	3	4	4	5	5	5
7	0	1	1	2	2	3	4	4	4	4	5	5	6
8	0	1	1	2	3	3	4	5	5	5	5	5	6
9	0	1	1	2	3	4	4	5	5	5	6	6	6

© 2015 Goodrich and Tamassia

LCS

Analysis of LCS Algorithm

We have two nested loops The outer one iterates n times The inner one iterates *m* times A constant amount of work is done inside each iteration of the inner loop Thus, the total running time is O(nm) Answer is contained in L[n,m] (and the subsequence can be recovered from the L table).