Quick-Sort

Quick-Sort

Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:

- **Divide**: pick a random element x (called *pivot*) and partition S into
 - L elements less than x
 - E elements equal x
 - G elements greater than x
- **Recur**: sort L and G
- **Conquer**: join L, E and G
Partition

- We partition an input sequence as follows:
 - We remove, in turn, each element \(y \) from \(S \) and
 - We insert \(y \) into \(L, E \) or \(G \), depending on the result of the comparison with the pivot \(x \)

- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes \(O(1) \) time

- Thus, the partition step of quick-sort takes \(O(n) \) time

Algorithm \(\text{partition}(S, p) \)

Input sequence \(S \), position \(p \) of pivot

Output subsequences \(L, E, G \) of the elements of \(S \) less than, equal to, or greater than the pivot, resp.

\(L, E, G \leftarrow \) empty sequences

\(x \leftarrow S.\text{remove}(p) \)

\(\text{while } \neg \text{S.isEmpty}() \)

\(y \leftarrow S.\text{remove}(S.\text{first}()) \)

if \(y < x \)

\(L.\text{addLast}(y) \)

else if \(y = x \)

\(E.\text{addLast}(y) \)

else \{ \(y > x \) \}

\(G.\text{addLast}(y) \)

return \(L, E, G \)
Quick-Sort Tree

- An execution of quick-sort is depicted by a binary tree
 - Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
 - The root is the initial call
 - The leaves are calls on subsequences of size 0 or 1
Execution Example

Pivot selection

7 2 9 4 3 7 6 1
1 2 3 4 6 7 8 9

7 2 9 4
2 4 7 9

3 8 6 1
1 3 8 6

2 2

9 4
4 9

3 3

8 8

9 9
4 4
Execution Example (cont.)

- Partition, recursive call, pivot selection

```
2 4 3 1 → 2 4 7 9
9 4 4 9
3 3 8 8
```

```
7 2 9 4 3 7 6 1 → 1 2 3 4 6 7 8 9
3 8 6 1 → 1 3 8 6
```

© 2015 Goodrich and Tamassia
Execution Example (cont.)

Partition, recursive call, base case
Execution Example (cont.)

Recursive call, ..., base case, join

```
3  8  6  1
→ 3
8
→ 8
```

```
7  2  9  4  3  7  6  1
1  2  3  4  6  7  8  9
```

```
2  4  3  1  → 1  2  3  4
1 → 1
```

```
3  8  6  1  → 1  3  8  6
```

```
4  3  → 3  4
```

```
9  9  → 4  → 4
```

```
3  3
```

```
8  8
```
Execution Example (cont.)

Recursive call, pivot selection

```
7  2  9  4  3  7  6  1
```

```
2  4  3  1  \rightarrow  1  2  3  4
```

```
1 \rightarrow 1
```

```
4  3  \rightarrow  3  4
```

```
9  9
```

```
4 \rightarrow 4
```

```
7  9  7  \rightarrow  1  3  8  6
```

```
8  8
```

```
9  9
```
Execution Example (cont.)

- Partition, ..., recursive call, base case
Execution Example (cont.)

Join, join

© 2015 Goodrich and Tamassia
Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element.
- One of L and G has size $n - 1$ and the other has size 0.
- The running time is proportional to the sum $n + (n - 1) + \ldots + 2 + 1$.
- Thus, the worst-case running time of quick-sort is $O(n^2)$.

<table>
<thead>
<tr>
<th>depth</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>n</td>
</tr>
<tr>
<td>1</td>
<td>$n - 1$</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>$n - 1$</td>
<td>1</td>
</tr>
</tbody>
</table>
Expected Running Time

Consider a recursive call of quick-sort on a sequence of size \(s \):
- **Good call**: the sizes of \(L \) and \(G \) are each less than \(3s/4 \)
- **Bad call**: one of \(L \) and \(G \) has size greater than \(3s/4 \)

A call is **good** with probability \(1/2 \):
- \(1/2 \) of the possible pivots cause good calls:

```
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
```

- **Bad pivots**: 2, 4, 7, 9, 10, 11, 12, 13, 15, 16
- **Good pivots**: 1, 6, 3, 8, 7, 14
- **Bad pivots**: 5, 16
Expected Running Time, Part 2

- **Probabilistic Fact:** The expected number of coin tosses required in order to get \(k \) heads is \(2^k \)
- For a node of depth \(i \), we expect
 - \(i/2 \) ancestors are good calls
 - The size of the input sequence for the current call is at most \((3/4)^{i/2}n \)
- Therefore, we have
 - For a node of depth \(2\log_{4/3}n \), the expected input size is one
 - The expected height of the quick-sort tree is \(O(\log n) \)
- The amount or work done at the nodes of the same depth is \(O(n) \)
- Thus, the expected running time of quick-sort is \(O(n \log n) \)
In-Place Quick-Sort

Quick-sort can be implemented to run in-place.

In the partition step, we use replace operations to rearrange the elements of the input sequence such that:

- the elements less than the pivot have rank less than \(h \)
- the elements equal to the pivot have rank between \(h \) and \(k \)
- the elements greater than the pivot have rank greater than \(k \)

The recursive calls consider:

- elements with rank less than \(h \)
- elements with rank greater than \(k \)

Algorithm \textit{inPlaceQuickSort}(S, l, r)

\begin{itemize}
 \item \textbf{Input} sequence \(S \), ranks \(l \) and \(r \)
 \item \textbf{Output} sequence \(S \) with the elements of rank between \(l \) and \(r \) rearranged in increasing order
\end{itemize}

\begin{algorithmic}
 \If\(l \geq r \)
 \State \Return
 \EndIf
 \State \(i \leftarrow \text{a random integer between } l \text{ and } r \)
 \State \(x \leftarrow S.\text{elemAtRank}(i) \)
 \State \((h, k) \leftarrow \text{inPlacePartition}(x) \)
 \State \textit{inPlaceQuickSort}(S, l, h - 1)
 \State \textit{inPlaceQuickSort}(S, k + 1, r)
\end{algorithmic}
In-Place Partitioning

- Perform the partition using two indices to split S into L and $E \cup G$ (a similar method can split $E \cup G$ into E and G).

\[
\begin{array}{cccccccccc}
3 & 2 & 5 & 1 & 0 & 7 & 3 & 5 & 9 & 2 & 7 & 9 & 8 & 9 & 7 & 6 & 9
\end{array}
\]

(pivot = 6)

- Repeat until j and k cross:
 - Scan j to the right until finding an element $\geq x$.
 - Scan k to the left until finding an element $< x$.
 - Swap elements at indices j and k
Summary of Sorting Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>selection-sort</td>
<td>$O(n^2)$</td>
<td>in-place, slow (good for small inputs)</td>
</tr>
<tr>
<td>insertion-sort</td>
<td>$O(n^2)$</td>
<td>in-place, slow (good for small inputs)</td>
</tr>
<tr>
<td>quick-sort</td>
<td>$O(n \log n)$</td>
<td>in-place, randomized, fastest (large inputs)</td>
</tr>
<tr>
<td>heap-sort</td>
<td>$O(n \log n)$</td>
<td>in-place, fast (good for large inputs)</td>
</tr>
<tr>
<td>merge-sort</td>
<td>$O(n \log n)$</td>
<td>sequential data access, fast (huge inputs)</td>
</tr>
</tbody>
</table>