
© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 1

Bucket-Sort and Radix-Sort

Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

USGS NEIC. Public domain government image.

© 2015 Goodrich and Tamassia

Application:
Constructing Histograms

One common computation in data visualization and
analysis is computing a histogram.
For example, n students might be assigned integer
scores in some range, such as 0 to 100, and are then
placed into ranges or “buckets” based on these
scores.

Bucket-Sort and Radix-Sort 2

A histogram of scores from a recent Algorithms course taught by one of the authors
(with extra credit included).

© 2015 Goodrich and Tamassia

Application: An Algorithm for
Constructing Histograms

When we think about the algorithmic issues in constructing a
histogram of n scores, it is easy to see that this is a type of sorting
problem.
But it is not the most general kind of sorting problem, since the keys
being used to sort are simply integers in a given range.
So a natural question to ask is whether we can sort these values
faster than with a general comparison-based sorting algorithm.
The answer is “yes.” In fact, we can sort them in O(n) time.

Bucket-Sort and Radix-Sort 3

A histogram of scores from a recent Algorithms course taught by one of the authors
(with extra credit included).

© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 4

Bucket-Sort
Let be S be a sequence of n
(key, element) items with keys
in the range [0, N - 1]
Bucket-sort uses the keys as
indices into an auxiliary array B
of sequences (buckets)
Phase 1: Empty sequence S by

moving each entry (k, o) into its
bucket B[k]

Phase 2: For i = 0, …, N - 1, move
the entries of bucket B[i] to the
end of sequence S

Analysis:
n  Phase 1 takes O(n) time
n  Phase 2 takes O(n + N) time

 Bucket-sort takes O(n + N) time

Algorithm bucketSort(S):
Input: Sequence S of entries with
integer keys in the range [0, N − 1]
Output: Sequence S sorted in
nondecreasing order of the keys
let B be an array of N sequences,
each of which is initially empty
for each entry e in S do
 k = the key of e
 remove e from S
 insert e at the end of bucket B[k]
for i = 0 to N−1 do
 for each entry e in B[i] do
 remove e from B[i]
 insert e at the end of S

© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 5

Example
Key range [0, 9]

7, d 1, c 3, a 7, g 3, b 7, e

1, c 3, a 3, b 7, d 7, g 7, e

Phase 1

Phase 2
0 1 2 3 4 5 6 7 8 9

B

1, c 7, d 7, g 3, b 3, a 7, e

∅ ∅ ∅ ∅ ∅ ∅ ∅

© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 6

Properties and Extensions
Key-type Property
n  The keys are used as

indices into an array
and cannot be arbitrary
objects

n  No external comparator

Stable Sort Property
n  The relative order of

any two items with the
same key is preserved
after the execution of
the algorithm

Extensions
n  Integer keys in the range [a, b]

w  Put entry (k, o) into bucket
B[k - a]

n  String keys from a set D of
possible strings, where D has
constant size (e.g., names of
the 50 U.S. states)
w  Sort D and compute the rank

r(k) of each string k of D in
the sorted sequence

w  Put entry (k, o) into bucket
B[r(k)]

© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 7

Lexicographic Order
A d-tuple is a sequence of d keys (k1, k2, …, kd), where
key ki is said to be the i-th dimension of the tuple
Example:
n  The Cartesian coordinates of a point in space are a 3-tuple

The lexicographic order of two d-tuples is recursively
defined as follows

(x1, x2, …, xd) < (y1, y2, …, yd)
⇔

x1 < y1 ∨ x1 = y1 ∧ (x2, …, xd) < (y2, …, yd)

 I.e., the tuples are compared by the first dimension,
then by the second dimension, etc.

© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 8

Lexicographic-Sort
Let Ci be the comparator
that compares two tuples by
their i-th dimension
Let stableSort(S, C) be a
stable sorting algorithm that
uses comparator C
Lexicographic-sort sorts a
sequence of d-tuples in
lexicographic order by
executing d times algorithm
stableSort, one per
dimension
Lexicographic-sort runs in
O(dT(n)) time, where T(n) is
the running time of
stableSort

Algorithm lexicographicSort(S)
 Input sequence S of d-tuples
 Output sequence S sorted in
 lexicographic order

 for i ← d downto 1

 stableSort(S, Ci)

Example:
(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)

(2, 1, 4) (3, 2, 4) (5,1,5) (7,4,6) (2,4,6)

(2, 1, 4) (5,1,5) (3, 2, 4) (7,4,6) (2,4,6)

(2, 1, 4) (2,4,6) (3, 2, 4) (5,1,5) (7,4,6)

© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 9

Radix-Sort
Radix-sort is a
specialization of
lexicographic-sort that
uses bucket-sort as the
stable sorting algorithm
in each dimension.
Radix-sort is applicable
to tuples where the
keys in each dimension i
are integers in the
range [0, N - 1]
Radix-sort runs in time
O(d(n + N))
If d is constant and N is
O(n), then this is O(n).

Algorithm radixSort(S, N)
 Input sequence S of d-tuples such
 that (0, …, 0) ≤ (x1, …, xd) and
 (x1, …, xd) ≤ (N - 1, …, N - 1)
 for each tuple (x1, …, xd) in S
 Output sequence S sorted in
 lexicographic order
 for i ← d downto 1

 bucketSort(S, N)

