Presentation for use with the textbook, Algorithm Design and
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Bucket-Sort and Radix-Sort

Oklahoma Earthquakes Magnitude 3.0 and greater
160
As of May 2, 2014
140 -
®
; 120
§ 100 - Earthquakes in
all of 2013
fo
W
s 60
£ v
E
] 20 1 ~1.6/year C %
o - J L B e———
1% 2001 2003 2005 2007 2011
1999 Year
Source: USGS-NEK ComCat & Oklohome Geological Survey; Moy 2, 2014

USGS NEIC. Public domain government image.

© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 1

Application:
Constructing Histograms

N

" @ One common computation in data visualization and
analysis is computing a histogram.

@ For example, n students might be assigned integer
scores in some range, such as 0 to 100, and are then
placed into ranges or “buckets” based on these
SCOIES. ., (msorivme: total sooe)

25
25 —
20 -

15

11
10 9
6
3 3 3
1 1 | 11
ol°.%,° .°mm° i P

32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104

A histogram of scores from a recent Algorithms course taught by one of the authors
(with extra credit included).

© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 2

Application: An Algorithm for
Constructing Histograms

N

4@ When we think about the algorithmic issues in constructing a
histogram of n scores, it is easy to see that this is a type of sorting
problem.

@ But it is not the most general kind of sorting problem, since the keys
being used to sort are simply integers in a given range.

@ So a natural question to ask is whether we can sort these values
faster than with a general comparison-based sorting algorithm.

#® The answer is "yes.” In fact, we can sort them in O(n) time.

12
11
10 9
6
°r 3 3
SR ¥
om0, ,° ° mm° i o

32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 100 104
A histogram of scores from a recent Algorithms course taught by one of the authors
(with extra credit included).

© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 3

&« _

Bucket-Sort

N

@ Let be S be a sequence of n
(key, element) items with keys
in the range [0, NV — 1] Input: Sequence S of entries with

@ Bucket-sort uses the keys as integer keys in the range [0, N — 1]
indices into an auxiliary array B | Output: Sequence S sorted in
of sequences (buckets) nondecreasing order of the keys
Phase 1: Empty sequence S by let B be an array of N sequences,
moving each entry (k, o) into its | €ach of which is initially empty
bucket B[k] for each entry e in S do

Phase 2: Fori=0,... N-1, move | k =the key of e
the entries of bucket B[i]to the | remove e from S

Algorithm bucketSort(S):

end of sequence S
@ Analysis:
= Phase 1 takes O(n) time

= Phase 2 takes O(n + N) time
Bucket-sort takes O(n + N) time

© 2015 Goodrich and Tamassia

insert e at the end of bucket B[k]
fori=0toN-1do
for each entry e in B[i] do
remove e from BJ[i]
insert e at the end of S

Bucket-Sort and Radix-Sort 4

Example

N

@ Key range [0, 9]

© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 5

Properties and Extensions

@ Key-type Property Extensions

N

I

s [he keys are used as | Integer keys in the Fange [tl, b]
indices into an array + Put entry (k, o) into bucket
and cannot be arbitrary Blk - al
objects = String keys from a set D of
\ ‘ | ¢ possible strings, where D has

=+ NO.€X1CMal compatator constant size (e.g., names of

@ Stable Sort Property the 50 U.S. states)
- + Sort D and compute the rank
= The relative order of r(k) of each string k of D in
any two items with the the sorted sequence
same key is preserved + Put entry (&, o) into bucket
after the execution of B[r(k)]

the algorithm

© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 6

Lexicographic Order

N

@ A d-tuple is a sequence of d keys (k,, k., ..., k;), where
key k; is said to be the i-th dimension of the tuple

@ Example:
= The Cartesian coordinates of a point in space are a 3-tuple

@ The lexicographic order of two d-tuples is recursively
defined as follows

(X1, X5, 000y X)) < (V15 Va5 0005 V)
Ao

X <y Voxi=p A (X 00, X)) < (Vg5 o0, V)
I.e., the tuples are compared by the first dimension,
then by the second dimension, etc.

© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 7

N

@ Let C; be the comparator

their i-th dimension
@ Let stableSort(S, C) be a

uses comparator C

@ Lexicographic-sort sorts a
sequence of d-tuples in
lexicographic order by

executing d times algorithm

stableSort, one per
dimension

@ Lexicographic-sort runs in

O(dT(n)) time, where T(n) is

the running time of
stableSort

Lexicographic-Sort

that compares two tuples by

stable sorting algorithm that

Algorithm lexicographicSort(S)

Input sequence S of d-tuples
Output sequence S sorted in
lexicographic order

for i < d downto 1
stableSort(S, C,)

Example:

(7,4,6) (5,1,5) (2,4,6) (2, 1, 4) (3, 2, 4)
2, 1,4)(3,2,4)(5,1,5) (7,4,6) (2,4,6)
2, 1,4)(5,1,5) (3, 2, 4) (7,4,6) (2,4,6)
(2, 1,4) (2,4,6) (3, 2,4) (5,1,5) (7,4,6)

© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 8

Radix-Sort

@ Radix-sort is a
specialization of
lexicographic-sort that
uses bucket-sort as the
stable sorting algorithm

N

in each dimension. Algorithm radixSort(S, N)

Radix-sort is applicable Input sequence § of d-tuples such
to tuples where the that (0, ..., 0) = (x, ..., X,;) and
keys in each dimension i (Xp ey X)=(N— 1, .y, N— 1)
are integers in the for each tuple (xy, ..., x,) n§
range [0, N - 1] Outpqt sequence S sorted in

_ L lexicographic order

4 Radix-sort runs in time .

0(d() for i < d downto 1
n+N) bucketSort(S, N)

#® If dis constant and N is
O(n), then this is O(n).
© 2015 Goodrich and Tamassia Bucket-Sort and Radix-Sort 9

