Random Permutations

Trees with snow on branches, "Half Dome, Apple Orchard, Yosemite," 1933 Ansel Adams. U.S. government image. U.S. National Archives and Records Administration.

Generating Random Permutations

- The input to the random permutation problem is a list, $X=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, of n elements, which could stand for playing cards or any other objects we want to randomly permute.
- The output is a reordering of the elements of X, done in a way so that all permutations of X are equally likely.
- We can use a function, random(k), which returns an integer in the range [$0, k-1$] chosen uniformly and independently at random.

Applications: Simple Algorithms and Card Games

- A randomized algorithm is an algorithm whose behavior depends, in part, on the outcomes of random choices or the values of random bits.
- The main advantage of using randomization in algorithm design is that the results are often simple and efficient.
- In addition, there are some problems that need randomization for them to work effectively.
- For instance, consider the problem common in computer games involving playing cards-that of randomly shuffling a deck of cards so that all possible orderings are equally likely.

Algorithm 1: Random Sort

- This algorithm simply chooses a random number for each element in X and sorts the elements using these values as keys.

Analysis of Random-Sort

a To see that every permutation is equally likely to be output by the random-sort method, note that each element, x_{i}, in X has an equal probability, $1 / n$, of having its random r_{i} value be the smallest.

- Thus, each element in X has equal probability of $1 / n$ of being the first element in the permutation.
- Applying this reasoning recursively, implies that the permutation that is output has the following probability of being chosen:

$$
\left(\frac{1}{n}\right) \cdot\left(\frac{1}{n-1}\right) \cdots\left(\frac{1}{2}\right) \cdot\left(\frac{1}{1}\right)=\frac{1}{n!}
$$

- That is, each permutation is equally likely to be output.
- There is a small probability that this algorithm will fail, however, if the random values are not unique.

Fisher-Yates Shuffling

- There is a different algorithm, known as the Fisher-Yates algorithm, which always succeeds.

Algorithm FisherYates (X) :
Input: An array, X, of n elements, indexed from position 0 to $n-1$
Output: A permutation of X so that all permutations are equally likely
for $k=n-1$ downto 1 do
Let $j \leftarrow \operatorname{random}(k+1) \quad / / j$ is a random integer in $[0, k]$
Swap $X[k]$ and $X[j] \quad / / ~ T h i s ~ m a y ~ " s w a p " ~ X[k] ~ w i t h ~ i t s e l f, ~ i f ~ j=k ~$
return X

Analysis of Fisher-Yates

- This algorithm considers the items in the array one at time from the end and swaps each element with an element in the array from that point to the beginning.
- Notice that each element has an equal probability, of $1 / n$, of being chosen as the last element in the array X (including the element that starts out in that position).
- Applying this analysis recursively, we see that the output permutation has probability

$$
\left(\frac{1}{n}\right) \cdot\left(\frac{1}{n-1}\right) \cdots\left(\frac{1}{2}\right) \cdot\left(\frac{1}{1}\right)=\frac{1}{n!}
$$

- That is, each permutation is equally likely.

