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Shortest Paths 

Presentation for use with the textbook, Algorithm Design and 
Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015 
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Weighted Graphs 
q  In a weighted graph, each edge has an associated numerical 

value, called the weight of the edge 
q  Edge weights may represent, distances, costs, etc. 
q  Example: 

n  In a  flight route graph, the weight of an edge represents the 
distance in miles between the endpoint airports 
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Shortest Paths 
q  Given a weighted graph and two vertices u and v, we want to 

find a path of minimum total weight between u and v. 
n  Length of a path is the sum of the weights of its edges. 

q  Example: 
n  Shortest path between Providence and Honolulu 

q  Applications 
n  Internet packet routing  
n  Flight reservations 
n  Driving directions 
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Shortest Path Properties 
Property 1: 

 A subpath of a shortest path is itself a shortest path 
Property 2: 

 There is a tree of shortest paths from a start vertex to all the other 
vertices 

Example: 
 Tree of shortest paths from Providence 
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Dijkstra’s Algorithm 
q  The distance of a vertex 

v from a vertex s is the 
length of a shortest path 
between s and v 

q  Dijkstra’s algorithm 
computes the distances 
of all the vertices from a 
given start vertex s 

q  Assumptions: 
n  the graph is connected 
n  the edges are 

undirected 
n  the edge weights are 

nonnegative 

q  We grow a “cloud” of vertices, 
beginning with s and eventually 
covering all the vertices 

q  We store with each vertex v a 
label D[v] representing the 
distance of v from s in the 
subgraph consisting of the cloud 
and its adjacent vertices 

q  At each step 
n  We add to the cloud the vertex 

u outside the cloud with the 
smallest distance label, D[u] 

n  We update the labels of the 
vertices adjacent to u  
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Edge Relaxation 
q  Consider an edge e = (u,z) 

such that 
n  u is the vertex most recently 

added to the cloud 
n  z is not in the cloud 

q  The relaxation of edge e 
updates distance d(z) as 
follows: 
 D[z] ← min{D[z], D[u] + weight(e)} 

D[z] = 75 
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Dijkstra’s Algorithm: Details 

Shortest Paths 7 
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Example 
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Example (cont.) 
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Analysis of Dijkstra’s Algorithm 
q  Graph operations 

n  We find all the incident edges once for each vertex 
q  Label operations 

n  We set/get the distance and locator labels of vertex z O(deg(z)) times 
n  Setting/getting a label takes O(1) time 

q  Priority queue operations 
n  Each vertex is inserted once into and removed once from the priority 

queue, where each insertion or removal takes O(log n) time 
n  The key of a vertex in the priority queue is modified at most deg(w) 

times, where each key change takes O(log n) time  
q  Dijkstra’s algorithm runs in O((n + m) log n) time provided the 

graph is represented by the adjacency list/map structure 

n  Recall that Σv deg(v) = 2m 
q  The running time can also be expressed as O(m log n) since the 

graph is connected 
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Why Dijkstra’s Algorithm Works 
q  Dijkstra’s algorithm is based on the greedy 

method. It adds vertices by increasing distance. 
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n  Suppose it didn’t find all shortest 
distances. Let w be the first wrong 
vertex the algorithm processed. 

n  When the previous node, u, on the 
true shortest path was considered, 
its distance was correct 

n  But the edge (u,w) was relaxed at 
that time! 

n  Thus, so long as D[w]>D[u], w’s 
distance cannot be wrong.  That is, 
there is no wrong vertex 

(u,w) = (D,F) in this example 
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Why It Doesn’t Work for Negative-
Weight Edges 

n  If a node with a negative 
incident edge were to be added 
late to the cloud, it could mess 
up distances for vertices already 
in the cloud.  
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Bellman-Ford Algorithm  
q  Works even with negative-weight edges 
q  Must assume directed edges (for otherwise 

we would have negative-weight cycles) 
q  Iteration i finds all shortest paths that use i 

edges. 
q  Running time: O(nm). 
q  Can be extended to detect a negative-weight 

cycle if it exists  
n  How? 
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Bellman-Ford Algorithm: Details  
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DAG-based Algorithm  
q  We can produce a specialized shortest-

path algorithm for directed acyclic 
graphs (DAGs) 

q  Works even with negative-weight edges 
q  Uses topological order 
q  Doesn’t use any fancy data structures 
q  Is much faster than Dijkstra’s algorithm 
q  Running time: O(n+m). 
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DAG-based Algorithm: Details  
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DAG Example 
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All-Pairs Shortest Paths 
q  Find the distance 

between every pair of 
vertices in a weighted 
directed graph G. 

q  We can make n calls to 
Dijkstra’s algorithm (if no 
negative edges), which 
takes O(nmlog n) time. 

q  Likewise, n calls to 
Bellman-Ford would take 
O(n2m) time. 

q  We can achieve O(n3) 
time using dynamic 
programming (similar to 
the Floyd-Warshall 
algorithm). 

Algorithm AllPair(G) {assumes vertices 1,…,n} 
 for all  vertex pairs (i,j)  

 if  i = j 
  D0[i,i] ← 0 
 else if (i,j) is an edge in G 
  D0[i,j] ← weight of edge (i,j) 
 else 
  D0[i,j] ← + ∞ 

 for k ← 1 to n do     
 for i ← 1 to n do     
    for j ← 1 to n do     
    Dk[i,j] ← min{Dk-1[i,j], Dk-1[i,k]+Dk-1[k,j]} 

 return Dn 
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Uses only vertices 
numbered 1,…,k-1 Uses only vertices 

numbered 1,…,k-1 

Uses only vertices numbered 1,…,k 
(compute weight of this edge) 


