Presentation for use with the textbook, Algorithm Design and Applications, by M. T. Goodrich and R. Tamassia, Wiley, 2015

Shortest Paths

Lightning strike, 2009. U.S. government image. NOAA.

Weighted Graphs

- In a weighted graph, each edge has an associated numerical value, called the weight of the edge
- Edge weights may represent, distances, costs, etc.
- Example:
- In a flight route graph, the weight of an edge represents the distance in miles between the endpoint airports

Shortest Paths

- Given a weighted graph and two vertices u and v, we want to find a path of minimum total weight between \boldsymbol{u} and v.
- Length of a path is the sum of the weights of its edges.
- Example:
- Shortest path between Providence and Honolulu
- Applications
- Internet packet routing
- Flight reservations
- Driving directions

Shortest Path Properties

Property 1:
A subpath of a shortest path is itself a shortest path
Property 2:
There is a tree of shortest paths from a start vertex to all the other vertices

Example:

Tree of shortest paths from Providence

Dijkstra' s Algorithm

- The distance of a vertex v from a vertex s is the length of a shortest path between s and v
- Dijkstra's algorithm computes the distances of all the vertices from a given start vertex s
- Assumptions:
- the graph is connected
- the edges are undirected
- the edge weights are nonnegative
- We grow a "cloud" of vertices, beginning with s and eventually covering all the vertices
- We store with each vertex \boldsymbol{v} a label $\boldsymbol{D}[\nu]$ representing the distance of v from s in the subgraph consisting of the cloud and its adjacent vertices
- At each step
- We add to the cloud the vertex u outside the cloud with the smallest distance label, $\boldsymbol{D}[\boldsymbol{u}]$
- We update the labels of the vertices adjacent to u

Edge Relaxation

- Consider an edge $\boldsymbol{e}=(\boldsymbol{u}, \boldsymbol{z})$ such that
- \boldsymbol{u} is the vertex most recently added to the cloud
- z is not in the cloud

- The relaxation of edge e updates distance $d(z)$ as follows:

Dijkstra's Algorithm: Details

Algorithm DijkstraShortestPaths (G, v) :
Input: A simple undirected weighted graph G with nonnegative edge weights, and a distinguished vertex v of G
Output: A label, $D[u]$, for each vertex u of G, such that $D[u]$ is the distance from v to u in G
$D[v] \leftarrow 0$
for each vertex $u \neq v$ of G do
$D[u] \leftarrow+\infty$
Let a priority queue, Q, contain all the vertices of G using the D labels as keys. while Q is not empty do
// pull a new vertex u into the cloud
$u \leftarrow Q$.removeMin()
for each vertex z adjacent to u such that z is in Q do
// perform the relaxation procedure on edge (u, z)
if $D[u]+w((u, z))<D[z]$ then
$D[z] \leftarrow D[u]+w((u, z))$
Change the key for vertex z in Q to $D[z]$
return the label $D[u]$ of each vertex u

Example

Example (cont.)

Analysis of Dijkstra' s Algorithm

- Graph operations
- We find all the incident edges once for each vertex
- Label operations
- We set/get the distance and locator labels of vertex $\boldsymbol{z} \boldsymbol{O}(\operatorname{deg}(z))$ times
- Setting/getting a label takes $\boldsymbol{O}(1)$ time
- Priority queue operations
- Each vertex is inserted once into and removed once from the priority queue, where each insertion or removal takes $\boldsymbol{O}(\log \boldsymbol{n})$ time
- The key of a vertex in the priority queue is modified at most deg(w) times, where each key change takes $\boldsymbol{O}(\log n)$ time
- Dijkstra' s algorithm runs in $\boldsymbol{O}((\boldsymbol{n}+\boldsymbol{m}) \log \boldsymbol{n})$ time provided the graph is represented by the adjacency list/map structure
- Recall that $\boldsymbol{\Sigma}_{v} \operatorname{deg}(\boldsymbol{v})=2 \boldsymbol{m}$
- The running time can also be expressed as $\boldsymbol{O}(\boldsymbol{m} \log \boldsymbol{n})$ since the graph is connected

Why Dijkstra' s Algorithm Works

- Dijkstra' s algorithm is based on the greedy method. It adds vertices by increasing distance.
- Suppose it didn't find all shortest distances. Let w be the first wrong vertex the algorithm processed.
- When the previous node, \mathbf{u}, on the true shortest path was considered, its distance was correct
- But the edge (u, w) was relaxed at that time!
- Thus, so long as $D[w] \geq D[u]$, w's distance cannot be wrong. That is,

$(u, w)=(D, F)$ in this example there is no wrong vertex

Why It Doesn' t Work for NegativeWeight Edges

- Dijkstra' s algorithm is based on the greedy method. It adds vertices by increasing distance.
- If a node with a negative incident edge were to be added late to the cloud, it could mess up distances for vertices already in the cloud.

Bellman-Ford Algorithm

- Works even with negative-weight edges
- Must assume directed edges (for otherwise we would have negative-weight cycles)
- Iteration i finds all shortest paths that use i edges.
- Running time: O(nm).
- Can be extended to detect a negative-weight cycle if it exists
- How?

Bellman-Ford Algorithm: Details

Algorithm BellmanFordShortestPaths (\vec{G}, v) :
Input: A weighted directed graph \vec{G} with n vertices, and a vertex v of \vec{G} Output: A label $D[u]$, for each vertex u of \vec{G}, such that $D[u]$ is the distance from v to u in \vec{G}, or an indication that \vec{G} has a negative-weight cycle $D[v] \leftarrow 0$
for each vertex $u \neq v$ of \vec{G} do
$D[u] \leftarrow+\infty$
for $i \leftarrow 1$ to $n-1$ do
for each (directed) edge (u, z) outgoing from u do
// Perform the relaxation operation on (u, z)
if $D[u]+w((u, z))<D[z]$ then
$D[z] \leftarrow D[u]+w((u, z))$
if there are no edges left with potential relaxation operations then
return the label $D[u]$ of each vertex u
else
return " \vec{G} contains a negative-weight cycle"

Bellman-Ford Example

Nodes are labeled with their $\mathrm{D}[\mathrm{v}]$ values

DAG-based Algorithm

- We can produce a specialized shortestpath algorithm for directed acyclic graphs (DAGs)
- Works even with negative-weight edges
- Uses topological order
- Doesn' t use any fancy data structures
- Is much faster than Dijkstra' s algorithm
- Running time: $\mathrm{O}(\mathrm{n}+\mathrm{m})$.

DAG-based Algorithm: Details

Algorithm DAGShortestPaths (\vec{G}, s) :

Input: A weighted directed acyclic graph (DAG) \vec{G} with n vertices and m edges, and a distinguished vertex s in \vec{G}
Output: A label $D[u]$, for each vertex u of \vec{G}, such that $D[u]$ is the distance from v to u in \vec{G}
Compute a topological ordering $\left(v_{1}, v_{2}, \ldots, v_{n}\right)$ for \vec{G}
$D[s] \leftarrow 0$
for each vertex $u \neq s$ of \vec{G} do
$D[u] \leftarrow+\infty$
for $i \leftarrow 1$ to $n-1$ do
// Relax each outgoing edge from v_{i}
for each edge $\left(v_{i}, u\right)$ outgoing from v_{i} do if $D\left[v_{i}\right]+w\left(\left(v_{i}, u\right)\right)<D[u]$ then

$$
D[u] \leftarrow D\left[v_{i}\right]+w\left(\left(v_{i}, u\right)\right)
$$

Output the distance labels D as the distances from s.

DAG Example

Nodes are labeled with their $\mathrm{d}(\mathrm{v})$ values

All-Pairs Shortest Paths

- Find the distance between every pair of vertices in a weighted directed graph G.
- We can make n calls to Dijkstra's algorithm (if no negative edges), which takes $\mathrm{O}(\mathrm{nmlog} \mathrm{n})$ time.
- Likewise, n calls to Bellman-Ford would take $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~m}\right)$ time.
- We can achieve $O\left(n^{3}\right)$ time using dynamic programming (similar to the Floyd-Warshall algorithm).
© 2015 Goodrich and Tamassia

Algorithm $\operatorname{AllPair}(\boldsymbol{G})\{$ assumes vertices $1, \ldots, \boldsymbol{n}\}$ for all vertex pairs (i, j)
if $i=j$ $D_{0}[i, i] \leftarrow 0$
else if (i, j) is an edge in G
$D_{0}[i, j] \leftarrow$ weight of edge (i, j)
else
$D_{0}[i, j] \leftarrow+\infty$
for $k \leftarrow 1$ to n do
for $i \leftarrow 1$ to n do
for $j \leftarrow 1$ to n do
$\boldsymbol{D}_{k}[i, j] \leftarrow \min \left\{\boldsymbol{D}_{k-1}[i, j], \boldsymbol{D}_{k-1}[i, k]+\boldsymbol{D}_{k-1}[k, j]\right\}$
return D_{n}

